Nomenclature Alkenes and Alkynes - continued

E / Z nomenclature

- 1. look at 1st end of double bond
- 2. decide which atoms have largest atomic number
- 3. if cannot decide, go to the next set of atoms (until you can reach a decision)
- 4. do the same at other end of the double bond
- 5. Z (Zusammen together) \rightarrow same side E (Entgegen – opposite) \rightarrow opposite side

- high priority groups are on opposite sides
- so the molecule has *E* configuration

cis-cyclohexene or *Z*-cyclohexene normally called just **cyclohexene** as double bond always cis (Z) *E*-1-bromocyclohexene normally called just **1-bromocyclohexene** as double bond geometry always fixed

note: in small ring system without any side groups (n < 8) - always *cis* (*Z*) double bond

Nomenclature of alkynes

Rule:

- find the longest chain with maximum number of triple bonds, side groups, etc.
- number to give 1st multiple bonded (double bond / triple bond) position the lowest number
- drop "ane" and add "yne"
- for multiple triple bonds, drop "ne" and add "diyne"," triyne", etc.

eg.

н———н

- ethyne / acetylene (common name)
- sp-hybridized carbon atoms, linear structure
- σ bond between C and H
- one σ and two π bonds between the two carbons
- explosive gas

Trideca-1,3[*E*],11[*E*]-trien-5,7,9-triyne

In nature :

- alkenes \rightarrow very common _
- alkynes \rightarrow > 1000 alkynes known (often defense substances in plants)

Hydrocarbons \rightarrow C and H only

- alkanes most non-polar -
- alkenes intermediate polarity between alkanes and alkynes -
- alkynes more polar -
- overall, they all are very non-polar
- density less than water (1.0 g/cm^3) float on water
- immiscible with water
- dissolve well in non-polar solvents (like-dissolves-like)
- low mp, bp compared to other organic molecules of similar size with more electronegative atoms
- London (dispersion) forces control self association

Isoprenes or Isoprenoids (also known as – terpenes / terpenoids)

C₅ unit

2 X C₅ units

2 X C₅ units α -pinene

- myrcene perfume a monoterpene (C_{10} unit) -
- pinene is also a monoterpene (two isoprene units)

isoprenoid unit C₅ unit

2 X C₅ units

aldehyde group

citral

2 X C₅ units

Degrees of Unsaturation:

- all non-cyclic alkanes \rightarrow have the general formula of C_nH_{2n+2}

2,4-dimethylhexane C_8H_{18} has no (zero) degree of unsaturation

1,2-dimethylcyclohexane $C_8 H_{16}^{} \,$ has one degree of unsaturation

 $C_{10}H_{18}$ has 2 degrees of unsaturation

1,4-pentadiene C_5H_8 has 2 degrees of unsaturation

 $\alpha\mbox{-pinene} \\ C_{10}H_{16} \\ has 3 \mbox{ degrees of unsaturation} \\$

- in a molecule, a double bond or a ring system represents one degree of unsaturation

Reactions of alkene

General reaction \rightarrow addition reaction

- A=B=H \rightarrow hydrogenation reaction addition of hydrogen to double bond
 - syn or cis addition of $H_2 \rightarrow$ addition of hydrogen from same side of the double bond

- catalyst helps to break the H-H bond and interacts with alkene electrons, which lowers the activation energy of the reaction

Catalyst:

- lowers activation energy but remains unchanged overall

SM : alkene and H₂ Product : alkane (after hydrogenation)

- hydrogenation was syn (cis) addition, giving the cis-product as above