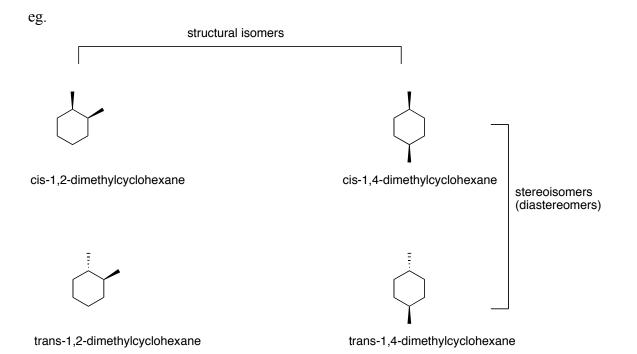

REVIEW: Cyclohexane – conformations

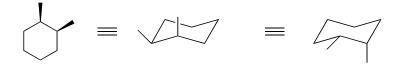


- most stable conformation is when methyl group is equatorial -
- when methyl group is placed axial, less stable conformation due to 1,3-diaxial interaction (as shown above)

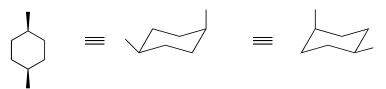
Isomers - different compounds with same molecular formula – 2 basic types 1. structural/constitutional isomers

- compounds with same molecular formula and different names, numbers
- 2. Stereoisomers have normally same name but different 3-D structure 2 sub-types (a) diastereomers/diastereoisomers (geometric isomers)

 - (b) enantiomers (non-superposable mirror images of same molecule)

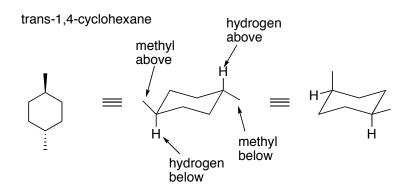


Conformations:


- different 3-D shapes a molecule can assume by rotation around single bonds

eg. Same conformation can be depicted in several ways

cis-1,2-cyclohexane



cis-1,4-cyclohexane

Note on drawing the most stable conformation of substituted cyclohexanes:

- generally, draw chair conformation of cyclohexane
- put the largest group in equatorial position
- draw the next group on the correct side (face) with respect to the largest group

- Reactions of alkanes: Two will be considered; combustion to CO_2 and H_2O already discussed and....
 - 1) Halogenation of alkanes
 - $R-H + X_2 \rightarrow R-X + HX$

R= any alkane (group), R-X = alkyl halide / haloalkane (X=Cl, Br, F) ; I₂ fails

substitution reaction – replace one group by another (below, H is replaced by Cl) eg.

CH ₄	+	Cl ₂	hυ → CH ₃ Cl +	HCI	
methane			methyl chloride chloromethane		
			light energy, $E = hv$		
			h = Planck's constant		
			v = frequency of light		
		CI	hu		
CH₃CI	+	Cl ₂		ICI	
			methylene chloride dichloromethane		
CH ₂ Cl ₂	+	Cl ₂	hυ ────────────────────────────────────	HCI	
		-	chloroform trichloromethane		
CHCl ₃	+	Cl ₂	► CCl ₄ + F	ICI	
011013	т	012			
			carbon tetrachloride tetrachloromethane		

Mechanism of reaction:

- step by step description of what happens during a reaction (hypothesis)

homolytic reaction: $R-R' \rightarrow R' + R'$ (one electron to each group) radical rxn heterolytic reaction: $R-R' \rightarrow R^+ + :R'$ (both electrons on one group)

heterolytic reactions more common, but halogenation of alkanes involves homolytic reactions

 $CH_4 + X_2 \xrightarrow{hv} CH_3X + HX$

X = Cl, Br, I

Reactivity in organic chemistry is associated with:

- polarized bonds (electronegative elements)
- lone pairs of electrons
- multiple bonds

Mechanism of halogenation of CH₄:

$$: \overset{\land}{\underset{h\nu}{\bigcirc}} \overset{\land}{\underset{h\nu}{\bigcirc}} 2 : \overset{\land}{\underset{h\nu}{\bigcirc}} initiation step$$

$$: \overset{\land}{\underset{h\nu}{\bigcirc}} + H - CH_3 \longrightarrow H \overset{\land}{\underset{l}{\bigcirc}} i + \cdot CH_3$$

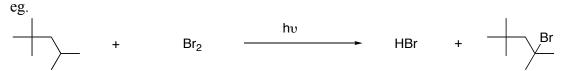
$$a methyl radical$$

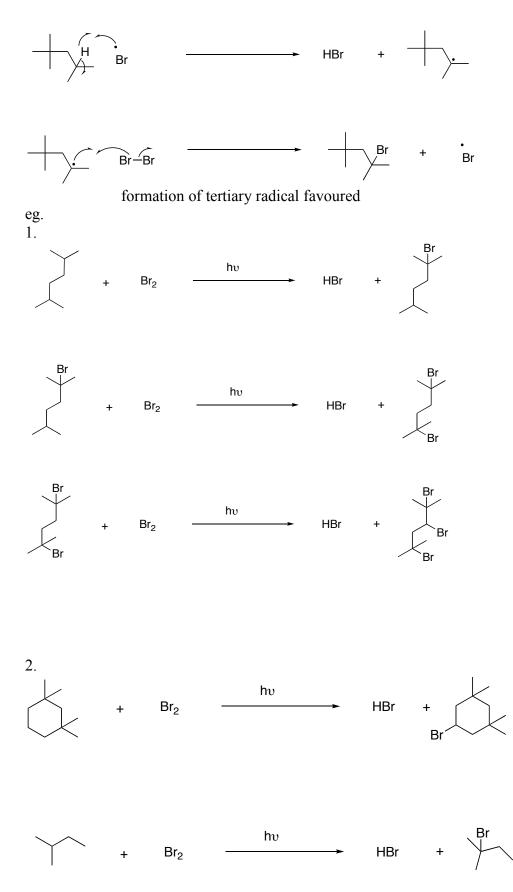
$$: \overset{\land}{\underset{h}{\bigcirc}} + : \overset{\land}{\underset{l}{\bigcirc}} - \overset{\land}{\underset{l}{\bigcirc}} i : \longrightarrow CH_3Cl + : \overset{\land}{\underset{l}{\bigcirc}} i \cdot$$

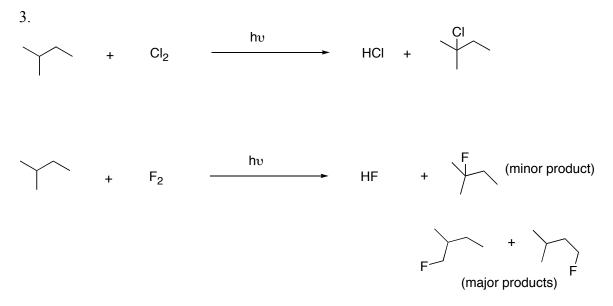
$$: \overset{\land}{\underset{h}{\bigcirc}} + : \overset{\land}{\underset{l}{\bigcirc}} i + : \overset{\land}{\underset{l}{\bigcirc}} i \to Cl_2$$

$$: \overset{\land}{\underset{h}{\bigcirc}} + \cdot CH_3 \longrightarrow CH_3CH_3$$

$$: \overset{\land}{\underset{l}{\bigcirc}} i + \cdot CH_3 \longrightarrow CH_3Cl$$


$$termination steps$$


Note: above mechanism applies to other halogens (F, Cl, Br)


Stability of radicals:

·CH ₃ <	·CH ₂ R	<	·CHR ₂ <	·CR ₃
methyl	primary		secondary	tertiary
radical	radical		radical	radical
(least stable)				(most stable)

- alkyl groups donate electron density through single bonds \rightarrow inductive effect
- hydrogen can also donate by inductive effect but poor donation compared to alkyl groups

WHY is fluorination different from chlorination or bromination – not selective for generation of tertiary (most stable) radical ?

- fluorine radical is most reactive radical, so goes for most accessible methyl hydrogen giving the primary alkyl radical
- -

-

- "less reactive \rightarrow most selective"
- "most reactive \rightarrow less selective"
 - Will discuss Hammond Postulate