Acidity:

 H_2O \longrightarrow H^+ + HO^-

$$K_a = \frac{[H^+] [HO^-]}{[H_2O]} = [H^+] [HO^-] = 10^{-15.7}$$

$$pK_a = -log(K_a)$$
, for H_2O , $pK_a = 15.7$

i) Acidity of simple alcohols:

CH ₃ -OH - methanol		H^{+}	+	CH ₃ -O methoxide	pKa = 16
H ₃ C-CH ₂ -OH - ethanol	<u> </u>	H	+	CH ₃ -CH ₂ -O ethoxide	pKa = 17
СН ₃ H ₃ C-С-ОН СН ₃		H^{+}	+	CH₃ H₃C−Ċ−O [−] CH₃	pKa = 19
2-methyl-2-propanol tert-butyl alcohol	I			tert-butoxide (strong base)	

Due to inductive donating effect of alkyl groups that make anion less stable (corresponding alcohol less acidic)

ii) Preparation of potassium tert-butoxide (equation not balanced):

iii) Acid-Base equilibrium:

- Why phenol is more acidic?
 - the anion formed (phenoxide) can be stabilized by conjugation onto benzene ring resonance forms can be obtained
 - the negative charge on the oxygen is delocalized

- resonance forms of phenoxide anion:

More examples:

1.

- Cl is electron withdrawing, so anion is stabilized, giving a lower pKa value than phenol

- an additional resonance form can be obtained with 4-nitrophenol (in comparison to phenoxide) which gives more stability to the anion formed

3.

- the negative charge can only be placed on the positions shown by arrow, so that it is not possible to delocalize the negative charge onto the nitro group, thus $pK_a = 9.3$ instead of $pK_a = 7$ as for the 4-nitrophenol

- negative charge cannot be stabilized by additional resonance into Cl , $pK_a\,{=}\,9.3$

2,4-dinitrophenol – negative charge can be placed on two additional conjugated oxygens (indicated by straight arrows) as in the 4-nitrophenol

2,4,6-trinitrophenol (picric acid – explosive – match head)

5.

- in the above two cases, the negative charge can be delocalized onto the doubly bonded oxygen of the nitro groups.

- in the case of dinitrophenol $- pK_a = 4.5$ (approx.)

- in the case of trinitrophenol $- pK_a = 0.5$ (approx.)

Synthesis (Preparation) of Alcohols: (Review of reactions seen earlier)

i) From alkenes: Addition of water

Formal Anti-Markovnikov water addition – different reagents – seen earlier as Hydroboration of Alkenes followed by Oxidation

