Chem 161 Nov 23, 2006

Summary: S_N1 , S_N2 , E1, and E2

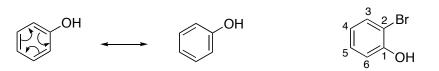
Halide	$S_N 1$	$S_N 2$	E1	E2
R-CH ₂ -X (1°)	No	Favoured	No	If strong base present
R ₂ -CH-X (2°)	Sometimes	Yes/competes with E2	Sometimes	Yes/competes with $S_N 2$, esp. with base.
R ₃ -C-X (3°)	Yes, esp. if HOH, ROH present	No	Competes with $S_N 1$	If strong base present

Alcohols, Ethers, carbohydrates (sugars)

CH₃CH₂OH - ethanol (grain alcohol) CH₃CH₂CH₂OH - 1-propanol (n-propanol) OH Naming: drop "e" and add "ol" to the parent name

H₃C-C-CH₃ - 2-propanol (isopropanol), rubbing alcohol

OH OH OH
$$CH_3$$
 $\frac{1}{3}$ OH CH_3 $\frac{1}{3}$ OH $\frac{1}$


2-cyclohexen-1-ol or cyclohex-2-en-1-ol

5-ethyl-4(Z)-octen-3-ol

16C = hexadecane 10,12 = Diene 1 = ol

Hexadeca-10(Z)-12(Z)-dien-1-ol

Phenols (aromatic alcohols)

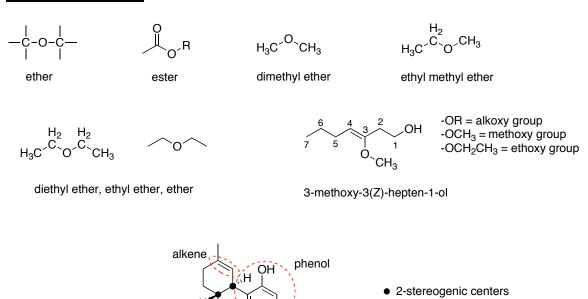
resonance forms

2-bromophenol

2-methylphenol

dihydroxybenzene (catechol)

-OH hydroxy group ("hydroxyl")


OH OH OH OH OH OH

Ethylene glycol 1,2-dihydroxyethane 1,2-ethanediol

glycerol 1,2,3-trihydroxypropane 12,3-propanetriol

Demo

Ether nomenclature

tetrahydrocannabinol (THC)

ether

Physical Properties of Alcohols

R-O-H - can donate and accept hydrogen bonds

- polar, good solvents

- longer alcohols are generally not miscible with water.

$$R-O-H-\cdots-O-R$$
 H-bonding results in high B.P and M.P. H

$$$\rm CH_3OH\ CH_3CH_3\ MW\ 32\ 30\ BP\ +65^{\circ}C\ -88^{\circ}C\ }$$

Properties of Ethers

- chemically inert
- non-polar (relatively)
 - have dipole-dipole interactions
- not miscible with water, good solvents for organic compounds.
- low B.P. and M.P. but higher than hydrocarbons.
 - eg. $CH_3CH_2OCH_2CH_3$ BP = $35^{\circ}C$

For Practice: Identify all the functional groups present in the above molecules? Assign R or S configuration to the stereocenters present?