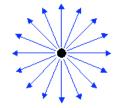
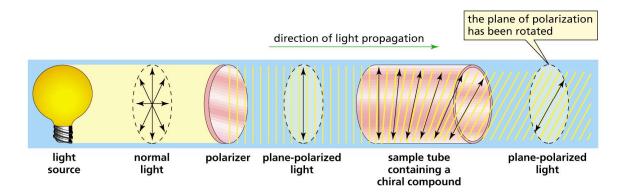


CW rotation (but H is up) = S-configuration

<u>Physical Properties + Stereochemistry</u>


- Diastereomers \rightarrow Different properties -
 - M.P, B.P, solubility, and density
- Enantiomers \rightarrow Same physical properties with achiral agents -- M.P, B.P, solubility, etc...
- Enantiomers \rightarrow different properties with chiral agents -
 - rotate plane of polarized light in equal but opposite direction.

Light
$$\rightarrow E = hv = \frac{hc}{\lambda}$$


v = frequency E = energy h = Planck's constant $\lambda =$ wavelength

short wavelength = high frequency High energy long wavelength low frequency Low energy

Light has oscillating Electric field (red) combined with magnetic field (black)

End on view of vector components of normal light

$$[\alpha]_D = \frac{x}{c \bullet l}$$

x = measured rotationc = concentration (mol/L)l = path length (cm)D = D-line of sodium light $[\alpha] =$ absolute rotation

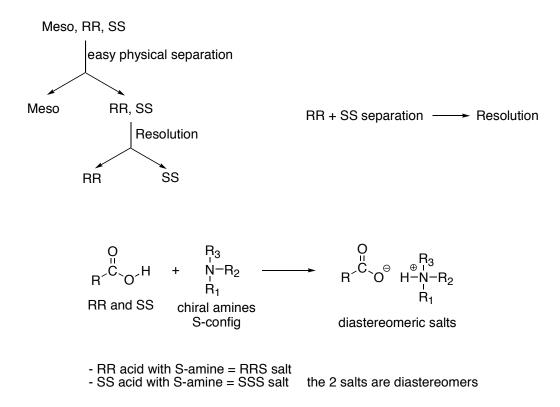
- 1:1 mixture of enantiomers = racemic mixture or racemate
- RR tartaric acid = 170° C
- SS tartaric acid = $120^{\circ}C$
- RR + SS racemic tartaric acid = $206^{\circ}C$

- enantiomers rotate plane-polarized light in equal but opposite directions.

<u>Optical Purity</u> = enantiomeric excess

- excess of one enantiomer over the other

Optical purity = $\frac{[\alpha]_{observed}}{[\alpha]_{pure-enantiomer}} \ge 100\%$

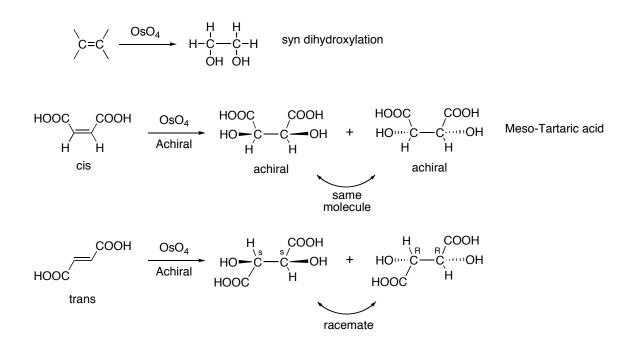

Eg.Assume pure enantiomer has 100° rotation (pure R isomer = $+100^{\circ}$; S isomer = -100°)

R	S	Rotation (°)	Optical purity
100%	0%	100	100%
75%	25%	50	50%
50%	50%	0	0%
25%	75%	-50	50%
0%	100%	-100	100%

Resolution: Separation of enantiomers.

- Always need chiral agents
- Physical separation (crystallization of specific enantiomer)
- "reaction" with chiral substance to get 2 diastereomers, which can be separated.

Ex) Tartaric Acid - mixture of meso, RR, and SS



<u>Reactions + Stereochemistry</u>

- **stereospecific reaction** = stereochemistry of starting material determines stereochemistry of product.
- **stereoselective reaction** = one isomer of product preferred.
- Non-stereospecific reaction = no stereoisomer preferred.

Example of Stereospecific Reaction (previously discussed)

The specific example shown below would NOT work well in practice because of COOH groups; it is used only to help understand concept in relation to tartaric acids

