Chem 161

Elimination Reactions: E₂ and E₁

- 1) Dehydrohalogenation (removal of HX, $X = Cl, Br, I, can be E_1 or E_2$)
- 2) Dehalogenation (removal of X_2 , *always* E_2)
- 3) Dehydration of alcohols (removal of HOH, reverse of addition of H_2O with alkenes *can be* E_1 *or* E_2).

Leaving Group Ability

 $I^- > Br^- > CI^- >> F^- > ^{-}OH$, ^{-}OR Good Bad

depends on size, solvation of anion, and bond length. Iodide is large and more solvated than Fluoride. C-I bond is longer and easier to break. Note that hydroxide anion (OH⁻) and alkoxide anion (OR⁻) are terrible leaving groups, but their protonated forms, water (HOH) and alcohol (HOR) are good leaving groups – hence those eliminations usually require acid

Reactivity of halide anions: As expected based on electronegativity

 $I^{\text{-}} > Br^{\text{-}} > Cl^{\text{-}} > F^{\text{-}}$

For E2 reaction correct alignment (antiperiplanar) favours eleimination

The trans isomer must assume an unfavorable conformation to allow alignment of H which is removed and iodide leaving group

- Zaitsev (Saytzeff) rule: elimination reactions give most highly substituted alkene

- Hoffman elimination: Removes least hindered hydrogen, usually uses bulky base.

Dehydration:

Polymers and Polymerization

Poly = many Meros = parts

Nature has many polymers, for example: nucleic acids (DNA, RNA), proteins and peptides (from amino acids), fat (from acetate), polysaccharides (sugar polymers).

 $H_2SO_4 + HNO_3 + Cotton \rightarrow Explosion (no smoke) = gun cotton (nitrocellulose)$

