
- Nucleophilic Substitution Reactions (SN2 and SN1) replace a leaving group with a nucleophile (Nu: or Nu:)
- Elimination Reactions (E2 and E1) generate a double bond by loss of " A+ " and " B: "
- They may compete with each other

Nucleophilic Substitution Reactions - SN2 Reaction:

- Reaction is:
 - Stereospecific (Walden Inversion of configuration)
 - Concerted all bonds form and break at same time
 - Bimolecular rate depends on concentration of both nucleophile and substrate
- Substrate:
 - Best if **primary** (one substituent on carbon bearing leaving group)
 - works if secondary, fails if tertiary
- Nucleophile:
 - Best if more reactive (i.e. more anionic or more basic)
- Leaving Group: Best if more stable (i.e. can support negative charge well):
 - \circ TsO- (very good) > I- > Br- > Cl- > F- (poor)
 - RF, ROH, ROR, RNH₂ are NEVER Substrates for SN2 reactions
 - Leaving Groups on double-bonded carbons are never replaced by SN2 reactions
- **Solvent:** Polar Aprotic (i.e. no OH) is best.
 - For example dimethylsulfoxide (CH₃SOCH₃), dimethylformamide (HCON(CH₃)₂), acetonitrile (CH₃CN).
 - Protic solvents (e.g. H₂O or ROH) deactivate nucleophile by hydrogen bonding but can be used in some case

Nucleophilic Substitution Reactions – SN1 Reaction:

• Reaction is:

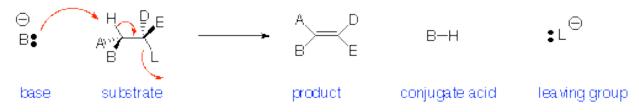
- Non-stereospecific (attack by nucleophile occurs from both sides)
- o Non-concerted has carbocation intermediate
- Unimolecular rate depends on concentration of only the substrate

• Substrate:

- Best if tertiary or conjugated (benzylic or allylic) carbocation can be formed as leaving group departs
- never primary

• Nucleophile:

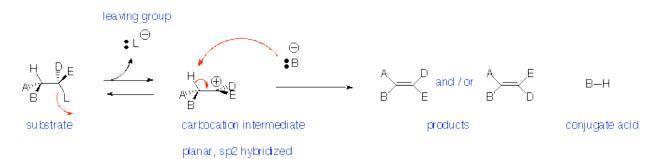
• Best if more reactive (i.e. more anionic or more basic)


• Leaving Group:

- o Same as SN2
- best if more stable (i.e. can support negative charge well)
- Examples: TsO- (very good) > I- > Br- > Cl- > F- (poor)
- However, tertiary or allylic ROH or ROR' can be reactive under strongly acidic conditions to replace OH or OR

• Solvent:

- o Same as SN2
- Polar Aprotic (i.e. no OH) is best
- Examples: dimethylsulfoxide (CH_3SOCH_3), dimethylformamide ($HCON(CH_3)_2$), acetonitrile (CH_3CN).
- \circ Protic solvents (e.g. H₂O or ROH) deactivate but can be used in some cases


Elimination Reactions - E2 Reaction:

H and L are anti-periplanar

- Reaction is:
 - Stereospecific (Anti-periplanar geometry preferred, Syn-periplanar geometry possible)
 - Concerted all bonds form and break at same time
 - o Bimolecular rate depends on concentration of both base and substrate
 - Favoured by strong bases

Elimination Reactions – E1 Reaction:

• Reaction is:

- Non-stereospecific- follows Zaitsev (Saytseff) Rule
- Non-concerted has carbocation intermediate favoured for tertiary leaving groups
- o Unimolecular rate depends on concentration of only the substrate
- Does NOT occur with primary alkyl halides (leaving groups)
- $\circ~$ Strong acid can promote loss of OH as $\rm H_2O$ or OR as HOR if tertiary or conjugated carbocation can be formed