National Institute For Nanotechnology

Modern Raman Spectroscopy: Has the sleeping giant finally awoken?*

Richard McCreery University of Alberta National Institute for Nanotechnology

> thanks to: Bonner Denton* Keith Carron Chris Brown Jun Zhao Steve Choquette Andrew Whitley

Stated differently: Has Raman spectroscopy made the transition from research tool to widely used routine analytical technique?

To get your attention:

- 1985:Raman sales ~ \$5 million/yearFTIR: ~\$400 million
- 2008: Raman ~ 200 million FTIR: \$600 800 million

(Note: Vendor names are informational, and do not imply an endorsement or "rating")

National Institute For Nanotechnology

cyclohexane

488 nm laser

488 nm rejection filter in front of camera

Rayleigh scattering, no frequency change. Intensity proportional to ν^4

Raman scattering, at longer wavelength (lower frequency) than input light

Raman spectroscopy in 1985:

- double monochromator
- single channel (PMT)
- high f/#
- tricky alignment required

Problems:

- low sensitivity
- slow (~20 min/spectrum)
- often high background
- intensities strongly dependent on alignment and focusing

Main vendors:

- Spex
- ISA/Jobin-Yvon
- Dilor
- Jasco

Sales: ~ \$5 million/year, compared to ~\$400 million/year for FTIR Non-research applications: negligible

Some factors underlying Raman growth:

- 1983: Fiber optic Raman for remote sampling
- 1986: FT-Raman at 1064 nm greatly reduced background
- 1989: Diode laser/ CCD Raman at 785 nm
- 1990-92: Holographic laser rejection filters
- 1995: Low f/#, holographic spectrometer and integrated fiber optic sampling
- 1996: ASTM Raman shift standards
- 1994-98: Low f/# imaging spectrographs with CCD detectors
- 1997: Luminescent intensity standards
- 2000- Automatic Raman shift calibration
- 2002- NIST Luminescence standards
- 2004- Hand-held portable spectrometer

1983: Fiber optic Raman for remote sampling (McCreery, Hendra, Fleischmann)

McCreery, Hendra, Fleischmann, *Anal. Chem.* **1983**, *55*, 146. Schwab, McCreery, *Anal. Chem.* **1984**, *56*, 2199.

Commercial examples of fiber optic probes:

Horiba-JY:

Kaiser Optical:

BW Tek:

Fluorescence was a big problem for practical samples:

cyclohexane

Raman

(9<u>M</u>)

fluorescein fluorescence $(10^{-5} M)$

Even a very low concentration of a fluorescer can overwhelm Raman scattering, due to much greater cross section

488 nm laser, with 488 rejection filter preceding camera

1986: FT-Raman at 1064 nm greatly reduced background (Chase, Hirschfeld)

Chase, D. B.; Fourier transform Raman spectroscopy; *JACS* **1986**, *108*, 7485. Hirschfeld, T.; Chase, B.; *Applied Spectroscopy* **1986**, *40*, 133.

Raman signal

S/N ratio =

(Raman + "fluorescence" + dark signal)^{1/2}

Good news: fluorescence usually much smaller at 1064 nm than with 400-633 nm lasers

Bad news: dark signal higher for NIR detectors, multiplex "disadvantage" and weaker Raman scattering at 1064 nm

Important practical consequences:

• broadened utility of Raman to many commercially important samples (impure organics, polymers, pharma)

 added significantly to vendors and sales (Bio-Rad, Bruker, Nicolet, Perkin Elmer, Varian)

1989: Diode laser/ CCD Raman at 785 nm (Williamson, Bowling, McCreery) fluorescence excited Rhodamine 6G: electronic state E intensity S 514. energy 785 nm Raman scattering 1000 2500 0 500 1500 2000 Raman shift, cm⁻¹

Williamson, Bowling, McCreery, ; *Applied Spectros.* **1989**, *43*, 372 Allred, McCreery, *Applied Spectroscopy* **1990**, *44*, 1229.

• CCD's are OUTSTANDING Raman detectors:

- multichannel (512 2000 in parallel)
- very low dark signal (< 0.001 e⁻/sec)
- sensitive (QE> 95% in visible)
- 2D imaging possible

- 785 nm lasers enable much of the reduction in fluorescence available with FT Raman, but retain the advantages of CCD detectors
- diode lasers are also compact, with low power and cooling demand

1990-92: Holographic laser rejection filters (Carrabba, Owen)

1995: Low f/# spectrometers and integrated fiber optic sampling (Owen, Battey, Pelletier, Kaiser, ISA, Chromex, Andor,...)

1985 (PMT	/Double)	2008 (CCD/Single)	Improvement
Quantum efficiency 0.15		0.95	6.3 X
Collection ($A_D \Omega$)	4 x 10 ⁻⁴	5 x 10 ⁻⁴	1.2
Transmission	0.1	0.6	6
# Channels	1	1600	1600

Total signal gain	72,000
(same acquisition time)	

1996: ASTM Raman shift standards (Carrabba, McCreery, 7 labs for input)

2000: Automatic Raman shift calibration (Allen, Zhou, US pat. 6,141,095)

ASTM E 1840 Standard Guide for Raman Shift Standards for Spectrometer Calibration

Automatic Raman Shift calibration:

Bruker "Sure-Cal"

Allen, Zhou, US patent 6,141,095 (2000) Zhao, Carrabba, Allen, *Applied Spectroscopy* **2002**, *56*, 834

1997: Luminescent intensity standards (Ray, Frost, McCreery)

2002- NIST Luminescence standards (Choquette, Etz, Hurst, Blackburn)

The problem:

The consequences:

- true relative intensities usually unknown
- uncorrected libraries are instrument dependent
- validation of regulatory data (e.g. pharma)

(spectra from Steve Choquette)

NIST standard reference material luminescent standards

Cr-doped glass with calibrated luminescent output in response to Raman laser

Standard is run like any other sample, then software mathematically corrects spectrum.

>230 sold so far, mostly for 785 nm

Hurst, Choquette, Etz, *Applied Spectroscopy* **2007**, *61*, 694. Choquette, Etz, Hurst, Blackburn, Leigh, *Applied Spectroscopy* **2007**, *61*, 117. (spectra from Steve Choquette)

Uncorrected SRM 2241 on 4 commercial Systems.

Instrument response function significantly distorts relative intensities

(spectra from Steve Choquette)

(much of remaining differences due to v⁴ factor)

(spectra from Steve Choquette)

Major progress toward widespread Raman use, 1985-2005:

- 10⁴ to 10⁵ sensitivity increase, 100-500 X in SNR
- Compact, low power, integrated systems available
- Much broader applicability
- Standards for frequency and intensity, automatic shift calibration
- Variety of sampling modes: fiber optic, through glass, in-vivo
- Proven industrial applications in process control and QC

HOWEVER:

- spectrometer prices bottomed out at ~ \$50K due to laser and CCD costs
- not yet suitable for field applications, not really portable

2004-08 Hand-held portable spectrometer (Carron, DeltaNu, Ahura)

- 785 nm laser
- < 1 5 lbs weight
- > 4 hrs battery life
- built-in library for rapid ID
- portable and shock tolerant
- vials, non-contact, through-bag
- \$15,000 \$35,000

DeltaNu/Intevac Photonics

— remote observation to 3 meters

Ahura Scientific

(slide from Chris Brown)

Has the "giant" woken up ?

1985: ISA/Horiba Spex Dilor

~ \$5 million sales (~\$400 million for FTIR)

2008:

Vendors*:

Ahura Scientific **Bruker Optics B&W** Tek Centice DeltaNu Foster&Freeman Horiba/ISA Jasco **Kaiser Optical Ocean Optics** Perkin Elmer **PI/Acton** Renishaw **River Diagnostics SEKI** Technotron Thermo Varian

*Mukhopadhyay, Analyt. Chem. product review, May 2007 (in part)

Some APPROXIMATE sales numbers:

2008 Raman sales:\$201 million(>40 X since 1985, CPI was 2X)2008 FTIR sales:\$600-800 million(slow growth since 1985)

- largest segment in dollar value is microscopes with dispersive spectrometers
- portable systems dominate in terms of number of systems (> 2000 since 2006)
- 10-15% annual growth for all but FT-Raman, much higher for portable
- 785 nm most popular laser
- still looking for "killer" application, although fairly wide use in QC, pharma, polymers, drug and hazmat ID, forensics

A final, and persistent question:

Why don't we do dispersive Raman with a 1064 nm laser, to obtain the same fluorescence reduction as in FT-Raman?

Detector Spectral Response Curves

Silicon detectors (i.e. CCDs) are not sensitive to light beyond ~1100 nm, where nearly all of the Raman scattering exists from 1064 nm lasers

(slide from Keith Carron)

(slide from Keith Carron)