Effects of Redox System Structure on Electron-Transfer Kinetics at Ordered Graphite and Glassy Carbon Electrodes

Kristin R. Kneten and Richard L. McCreery*

Department of Chemistry, The Ohio State University, 120 West 18th Avenue, Columbus, Ohio 43210

The basal plane of highly ordered pyrolytic graphite (HOPG) serves as an ordered model of more commonly used electrode surfaces such as glassy carbon (GC) and pyrolytic graphite. The defect density on the basal plane HOPG was reduced by careful cleaning and cell design and was verified to be low by requiring that ΔE_p for $\text{Fe(CN)}_6^{3-/4-}$ (1 M KCI) be greater than 700 mV for a 0.2 V/s scan rate. Then a variety of redox systems were examined on "validated" HOPG surfaces, and variations in the electron transfer rate constant, k_0, were observed. All 13 redox systems exhibited relatively fast kinetics on laser activated GC ($k_0 > 0.03$ cm/s for eight inorganic systems), and in several cases k_0 exceeded the instrumental limit. On HOPG, however, ΔE_p varied greatly for the 13 systems, ranging from 86 to >1200 mV. The reasons for this variation fall into three general classifications. First, reactions involving proton transfer (e.g. catechols) were all slow on HOPG, implying some role of the surface in mediating multistep processes. Second, the observed rate correlated with the exchange rate for homogeneous electron transfer, but the heterogeneous rates on HOPG were 3–5 orders of magnitude slower than that predicted from simple Marcus theory. Third, the physical properties of HOPG, such as density of electronic states and hydrophobicity, may depress k_0 relative to GC and metals.

INTRODUCTION

Due in part to the widespread use of carbon electrodes in electroanalysis and electrosynthesis, a large research effort has been invested in understanding heterogeneous electron transfer at carbon surfaces. Such investigations have dealt with effects of surface structure and pretreatment on electrochemical behavior for a variety of sp2 carbon materials, including pyrolytic graphite, carbon paste, glassy carbon (GC), carbon films, and highly ordered pyrolytic graphite (HOPG).1-5

The ultimate goal of electrode kinetic studies of such materials is elucidation of structure/reactivity relationships for carbon surfaces, with a specific goal of controlling electron-transfer rates. Achievement of these goals has been frustrated, however, by the complex nature of the carbon/solution interface caused by variability in surface history, particularly cleanliness, roughness, and the extent of oxide formation. Work in our lab and several others has demonstrated that reproducible kinetics are observable on GC with sufficient attention to surface history.6-12 In some cases, large changes in rate constants for benchmark redox systems can be effected reliably by laser activation,6,10 heat treatments,6,7 ultrasonic polishing,6 and electrochemical pretreatment.13-16 However, since the structure of the carbon/solution interface after these procedures is ill-defined at the atomic level, it is currently difficult to deduce the structural factors which control electrode kinetics at the molecular level. Without a structurally well defined carbon surface, a rationale for how rates vary for different redox systems will be hard to formulate. Stated differently, structure/reactivity relationships derived from an incompletely characterized carbon surface will be ambiguous.

Ideally, one would like to survey a range of redox systems on an atomically well defined carbon surface. The basal plane of highly ordered pyrolytic graphite (HOPG) has potential for such correlations because of its well-defined structure and relative lack of surface impurities. HOPG was first used as an electrode by Yeager et al.,17-19 and more recent work has demonstrated a large edge/basal plane rate anisotropy for several redox systems, with large voltammetric peak separations for Fe(CN)$_6^{3-/4-}$ and dopamine at the basal plane and near-reversible voltammetry at the edge plane.20,21 HOPG has also been used as a substrate for the spectroscopy of adsorbates,22 and its unusual adsorption properties and capacitance have been described.23 It has not always been possible, however, to study heterogeneous electron-transfer kinetics at basal plane HOPG for a wide range of systems because of several experimental problems. Recently we have shown the dominating role of edge plane defects in various electrochemical processes. HOPG surfaces yield a wide range of results of Fe(CN)$_6^{3-/4-}$ kinetics, 2,6-anthraquinonedisulfonate (AQDS) adsorption, and differential capacitance.

*Author to whom correspondence should be addressed.

depending on surface defect density.23,24 Capacitance ranging from 0.6 to 6.5 \(\mu\)F/cm\(^2\), AQDS adsorption from <1.0 to 85 pmol/cm\(^2\), and heterogeneous electron transfer rate constants for Fe(CN)\(_{6}^{3-/4-}\) from \(8 \times 10^{-7}\) to 0.041 cm/s were obtained depending on the defect density of the surface.20 It is clear, therefore, that without careful control of surface defects, highly variable rate constants can be obtained on the HOPG basal plane, impeding attempts to understand structure/reactivity relationships.

With an appreciation of the influence of defects on the electrochemical behavior of HOPG, it is possible to prepare low-defect basal surfaces which more accurately reflect the kinetics of the perfect, ordered surface. In the approach used here, we first validated a given HOPG basal surface by noting a slow \(k^0\) for Fe(CN)\(_{6}^{3-/4-}\). Since Fe(CN)\(_{6}^{3-/4-}\) has a high ratio of edge to basal rates, a slow rate indicates minuscule defect density. This same surface was then used to determine the rates for a variety of redox systems. Since the kinetic results were obtained on validated, low-defect surfaces, the surface-to-surface variability was greatly reduced and the rate comparisons were made on structurally better defined surfaces.

Heterogeneous electron transfer rates for 13 redox systems were determined at validated basal plane HOPG, high-defect density HOPG, and glassy carbon (GC). The results were used to assess the generality of the large edge/basal rate anisotropy and to infer structural variables affecting electrode kinetics at carbon electrodes.

EXPERIMENTAL SECTION

To minimize unintentional defects as well as air and solution exposure time, HOPG experiments were run in an inverted drop "cell" as reported earlier.23 Ungraded HOPG (gift from Arthur Moore, Union Carbide) was cleaved either with ordinary "scotch" tape or with an Exacto knife blade edge. Best results were obtained when a thick (ca. 5-mm) piece of HOPG was cut perpendicular to the basal plane with a knife blade and the piece delaminated spontaneously. The cleaved piece was placed onto a conductive metal plate with graphite/Nujol paste serving to ensure good electrical contact. A drop of solution was placed onto the reference/auxiliary electrode couple which was then lowered onto a visually defect-free surface giving an effective electrode area of approximately 0.1 cm\(^2\), as determined by Nicholson.27 In several cases, the GC rate constants were determined when the QRE was used, so an absolute potential was not required. Reference electrodes for GC experiments were either Ag/AgCl or sodium-saturated calomel (SSCE), but all E\textsubscript{1/2} values are reported relative to the SSCE. Laser irradiation (50 MW/cm\(^2\)) of HOPG was conducted either in situ as described previously20,21 or ex situ with immediate replacement of solution. Ex situ experiments were run by directing the laser beam through two right-angle prisms onto an inverted drop "cell". Solution was removed prior to and replaced immediately following irradiation. Glassy carbon electrodes (with areas of (2-5) \(\times\) 10\(^{-3}\) cm\(^2\)) were prepared as described previously22 from a GC-20 plate (Tokai) and embedded in epoxy (Eccobond 55, Emerson and Cuming, Inc.) The GC electrodes were polished conventionally and laser-irradiated (25 MW/cm\(^2\)) in solution as described previously.8

For scan rates of 0.2-20 V/s, linear sweep voltammetry was performed with a computer-triggered function generator (Tektronix, 5102) and a fast-scan converter. For faster scans, data were collected with a digital oscilloscope (Lecroy 9400A), with triggering and data transfer accomplished via locally written software. A conventional three-electrode potentiostat (Advanced Idea Mechanics, Columbus, OH) was used for all voltammetry, with the RC filter value maintained such that RC\(\tau\) < 4 ms.26 GC voltammetry was performed with scan rates of 0.2-100 V/s, and rate constants were calculated using the method of Nicholson.7 In several cases, the GC rate constants were sufficiently large that the \(\Delta E_p\) approached the reversible limit of 57/mV. For these cases, the rate constant evaluated from \(\Delta E_p\) was a lower limit. In no case was \(\Delta E_p\) for laser-activated GC greater than 150 mV. For validated HOPG, large \(\Delta E_p\) values bring into question the assumptions of constant transfer coefficient (\(\alpha\) underlying Nicholson's approach, so rate constants were calculated both from \(\Delta E_p\) and by the approach of Corrigan and Evans.28 Experimental voltammograms were compared with those simulated with potential-dependent \(\alpha\). Unpublished data showed otherwise, all HOPG rate constants were determined from the best fit to simulated voltammograms with potential-dependent \(\alpha\). For GC, \(\Delta E_p\) was sufficiently small that a potential-dependent \(\alpha\) was unnecessary for an accurate simulation and rate constants determined from simulations equal those calculated with the Nicholson approach. The experimentally determined rate con-

of peak separations and voltammogram shapes. Unusual voltammogram shapes are particularly evident for systems validated HOPG are exhibited in Figure 3A, experimental data for Fe(CN)$_6^{3-/4-}$ are compared to a simulation in which α is varied with potential. Note that this best fit to the anodic wave still does not completely match the experimental curve. In Figure 3B, however, Fe(phen)$_3^{2+/3+}$ voltammetry agrees well with the simulation, with a constant α. Results for all systems examined are summarized in Table II. As an additional measure of edge/basal plane anisotropy for HOPG, rate constants for laser-activated HOPG are included in Table II. In all cases, k^0 was larger on laser-damaged HOPG, often by several orders of magnitude.

In order to provide a reference carbon surface for comparison, rate constants for the eight inorganic systems and MV$^{1+/2+}$ were determined on the more commonly studied GC. Polished GC surfaces have been shown to yield very irreproducible rate constants, apparently due to surface impurities.1,5,7 Laser activation of polished GC yields reproducible rate constants for Fe(CN)$_6^{3-/4-}$, comparable to those observed at heat-treated and fractured GC.1,5,7,9 Thus laser-activated GC provides a carbon surface with reproducible kinetics with which to compare the behavior on HOPG for the redox systems examined. GC is also a more practical reference surface than edge plane HOPG due to the difficulty of reproducing the fragile edge plane surface.21 In some cases, adsorption or ohmic potential error prevented the use of sufficiently high scan rates to determine k_{G}^0 accurately. However, in all cases the Δ_{E_p} observed on GC was lower than that on validated HOPG. As shown in Table II, the difference in rate constants between HOPG and GC was large in some cases, confirming and extending the rate anisotropy observed for Fe(CN)$_6^{3-/4-}$.

RESULTS

Figure 1 shows the importance of defects to the observed voltammetry and illustrates a marked difference in the behavior of two inorganic redox systems. Voltammograms A and B were obtained on HOPG surfaces which met the validation criterion. Voltammogram A is for Co(phen)$_3^{2+/3+}$ on a surface for which Δ_{E_p} of Fe(CN)$_6^{3-/4-}$ was 900 mV, and B is for IrCl$_6^{2-/3-}$ on a surface exhibiting a Δ_{E_p} for Fe(CN)$_6^{3-/4-}$ of 1200 mV. Note the large difference in Δ_{E_p} for the two systems, indicating a much smaller k^0 for Co(phen)$_3^{2+/3+}$ than for IrCl$_6^{2-/3-}$. Voltammograms C and D were obtained on surfaces which failed the validation criterion, exhibiting Δ_{E_p} values for Fe(CN)$_6^{3-/4-}$ of 455 and 58 mV, respectively. Note that a decrease in Δ_{E_p} for Fe(CN)$_6^{3-/4-}$ for the surfaces of Figure 1A and 1C from 900 to 445 mV had a large effect on Δ_{E_p} for Co(phen)$_3^{2+/3+}$, implying that Co(phen)$_3^{2+/3+}$ is very sensitive to defects and has a high edge/basal rate ratio. However, an even larger change for the surfaces of Figure 1B and 1D (1200 to 58 mV) had only a slight effect on Δ_{E_p} for IrCl$_6^{2-/3-}$. IrCl$_6^{2-/3-}$ is only slightly faster on a quite defective surface, implying that the basal plane rate is not greatly slower than the edge plane rate. The variation in Δ_{E_p} for Fe(CN)$_6^{3-/4-}$ and various redox systems is shown in Table I for validated surfaces. Significant surface-to-surface variation was observed for Fe(CN)$_6^{3-/4-}$, presumably due to variations in the small residual defect density. This variation confirms the high sensitivity of Fe(CN)$_6^{3-/4-}$ kinetics to defect density. For the systems listed in Table I, the range in Δ_{E_p} among different systems is much greater than the variation for a given system.

Several voltammograms of different redox systems on validated HOPG are exhibited in Figure 2. Note the variety of peak separations and voltammogram shapes. Unusual voltammogram shapes are particularly evident for systems with low k^0. We have reported earlier that for Fe(CN)$_6^{3-/4-}$, the voltammogram shape at low-defect HOPG could be fit to simulations that involve a potential-dependent transfer coefficient.20 We note here that simulations with potential-dependent α do fit the experimental data better for certain systems, but there is still a degree of divergence from theory. For systems with peak separations < 150 mV, simulations with constant α fit well to experimental data. In Figure 3A, experimental data for Fe(CN)$_6^{3-/4-}$ are compared to a simulation in which α is varied with potential. Note that this best fit to the anodic wave still does not completely match the experimental curve. In Figure 3B, however, Fe(phen)$_3^{2+/3+}$ voltammetry agrees well with the simulation, with a constant α. Results for all systems examined are summarized in Table II. As an additional measure of edge/basal plane anisotropy for HOPG, rate constants for laser-activated HOPG are included in Table II. In all cases, k^0 was larger on laser-damaged HOPG, often by several orders of magnitude.

DISCUSSION

Considering the results in general terms initially, the most striking observation is the wide range of observed peak separations on validated HOPG, listed in Table II. In many cases, redox systems which exhibit fast electron transfer on GC or damaged HOPG, e.g. dopamine, Fe(CN)$_6^{3-/4-}$, and Co(phen)$_3^{2+/3+}$, are very slow on low-defect HOPG. For all 13 systems examined, the GC rates were faster than validated HOPG rates. On the basis of previous spectroscopic and microstructural information, we have concluded that this difference is due to the greater reactivity of graphitic edge regions compared to ordered basal plane.1,3,20,21 Although this conclusion was initially based on a limited number of redox systems. Since GC surfaces are rich in edge sites, their electrochemical kinetic behavior is similar to edge plane HOPG rather than basal plane.

Given the observation of a large edge/basal or GC/basal rate difference for at least the 13 systems studied, several questions arise. First, are the observations perturbed by some technical problems such as instrumentation limits, residual defects on the validated surface, etc.? Second, are they mechanistic differences among the 13 systems which cause the wide variations in rate? Third, for redox systems with apparently similar charge transfer mechanisms, what controls the rate on HOPG?

One technical limitation is easily recognized from the large k^0 values observed on GC. Fabrication of the GC electrodes

Table I. Peak Separations on Validated HOPG Surfaces

<table>
<thead>
<tr>
<th>System</th>
<th>ΔE_p (mV)</th>
<th>ΔE_p (mV)</th>
<th>k_{NO} (cm/s) (system)</th>
<th>k_0 (cm/s) (system)</th>
<th>$\alpha (da/dE)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 IrCl$_2^{2-/3-}$</td>
<td>137</td>
<td>1200</td>
<td>0.0034</td>
<td>0.0034</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>145</td>
<td>910</td>
<td>0.0029</td>
<td>0.50</td>
<td>(0.0)</td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>1160</td>
<td>0.0083</td>
<td>0.50</td>
<td>(0.0)</td>
</tr>
<tr>
<td>2 Ru(NH$_3)_6^{2+/3+}$</td>
<td>265</td>
<td>1230</td>
<td>5.6 x 10^{-4}</td>
<td>9 x 10^{-4}</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>215</td>
<td>1370</td>
<td>1.0 x 10^{-3}</td>
<td>0.00049 ± 0.0003</td>
<td>(0.0)</td>
</tr>
<tr>
<td>3 Co(phen)$_3^{2+/3+}$</td>
<td>715</td>
<td>900</td>
<td>8.0 x 10^{-6}</td>
<td>2 x 10^{-6}</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>675</td>
<td>725</td>
<td>1.3 x 10^{-5}</td>
<td>(0.25 V^{-1})</td>
<td>(0.0)</td>
</tr>
<tr>
<td>4 MV$^{+2/}$</td>
<td>695</td>
<td>940</td>
<td>2.6 x 10^{-6}</td>
<td>9.5 x 10^{-6}</td>
<td>(0.0)</td>
</tr>
<tr>
<td>5 Fe(phen)$_3^{2+/3+}$</td>
<td>64 ± 7</td>
<td>1300</td>
<td>>0.075</td>
<td>>0.075</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>57</td>
<td>1045</td>
<td>>0.075</td>
<td>(0.0)</td>
<td>(0.0)</td>
</tr>
<tr>
<td>6 Co(en)$_2^{2+/3+}$</td>
<td>777</td>
<td>695</td>
<td>5.4 x 10^{-6}</td>
<td>2 x 10^{-5}</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>771</td>
<td>1230</td>
<td>9.3 x 10^{-6}</td>
<td>(0.17 V^{-1})</td>
<td>(0.0)</td>
</tr>
<tr>
<td>7 Ru(en)$_2^{2+/3+}$</td>
<td>790</td>
<td>930</td>
<td>4.2 x 10^{-6}</td>
<td>6.3 x 10^{-6} ± 2.7 x 10^{-6}</td>
<td>(0.0)</td>
</tr>
<tr>
<td></td>
<td>757 ± 41</td>
<td>1085</td>
<td>7.0 x 10^{-6}</td>
<td>1.3 x 10^{-4}</td>
<td>0.62</td>
</tr>
<tr>
<td>8 Co(en)$_3^{2+/3+}$</td>
<td>307</td>
<td>1135</td>
<td>2.3 x 10^{-4}</td>
<td>4.5 x 10^{-4}</td>
<td>(0.0)</td>
</tr>
<tr>
<td></td>
<td>394 ± 99</td>
<td>1085</td>
<td>>0.042</td>
<td>>0.042</td>
<td>0.059</td>
</tr>
</tbody>
</table>

* All data at 200 mV/s. b Determined from ΔE_p by method of Nicholson. c Rate constant calculated by comparison to simulations, with α and da/dE shown.

Figure 2. Voltammetry at validated basal plane HOPG. 1 mM Ru(NH$_3)_6^{2+/3+}$, 1 M KCl; 2 mM Fe(phen)$_3^{2+/3+}$, 1 M KCl; 10 mM Co(en)$_3^{2+/3+}$, 1 M KCl; 1 mM dopamine, 0.1 M H$_2$SO$_4$; 1 mM 4-methylcatechol (4-MC), 0.1 M H$_2$SO$_4$; 1 mM DOPAC, 0.2 M HClO$_4$. Scan rate = 0.2 V/s. Potentials are vs Ag QRE.

Figure 3. Voltammetry at validated basal plane HOPG. Solid lines are experimental data in both cases. (A) 10 mM Co(en)$_3^{2+/3+}$, 1 M KCl. Dashed line simulated for $k_0 = 2 \times 10^{-4}$ cm/s, $\alpha_0 = 0.65$, $da/dE = 0.17 V^{-1}$. (B) 2 mM Fe(phen)$_3^{2+/3+}$, 1 M KCl. Dashed line simulated for $k_0 = 0.11$ cm/s, $\alpha_0 = 0.5$, $da/dE = 0.0 V^{-1}$. Scan rate = 0.2 V/s. Potentials are vs Ag QRE.

from well-characterized GC stock results in electrode surfaces with minimum dimensions of about 0.5 mm x 0.5 mm. Ohmic potential error limits the useful scan rate to about 500 V/s, resulting in an upper limit of observable k_0 on GC of about

0.5 cm/s. In a previous publication, these electrode were shown to yield reliable k_0 values of 0.5-0.8 cm/s at 100-500 V/s, but larger k_0 values are difficult to measure without
smaller electrodes. Therefore, GC rate constants reported as 0.2–0.6 cm/s here should be considered lower limits and could in fact be significantly higher. For HOPG examined with the inverted drop, the electrode area is larger, but k_0 is much smaller and high scan rates were not required. Thus the HOPG rate constants are not subject to significant error from solution interferences. In addition, the relatively high c-axis resistivity of HOPG (0.17 M cm) would yield a typical c-axis thickness of 0.1 mm. Thus, even for c-axis thin HOPG, the kinetic rate constants would be expected to be very small (Table 11).

A second potential technical problem arises from uncertainty about residual defects on the validated HOPG surface. As noted earlier, the large standard deviation for ΔE_p of Fe(CN)$_6^{3-/4-}$ on unvalidated surfaces indicates that adventitious defects can drastically affect observed kinetics. The requirement that ΔE_p for Fe(CN)$_6^{3-/4-}$ exceed 700 mV significantly reduces this variability (Table 11), but it is still possible that residual defects contribute to the apparent k_0 on HOPG. Since the rates on GC or edge plane graphite are all faster than those on validated HOPG, residual defects will increase the apparent k_0. Strictly speaking, the k_0 values measured on validated surfaces are upper limits for the true basal plane k_0 values. However, more can be concluded from the data in Table 11. The observed ΔE_p values for the test systems vary much less (and often in different directions) than the Fe(CN)$_6^{3-/4-}$ values, implying no correlation of ΔE_p with defect density on validated surfaces. Furthermore, ΔE_p varies greatly for test systems (e.g. 62 mV for Fe(phen)$_2^{3+/2+}$ vs 670 mV for Co(phen)$_2^{3+/2+}$) on surfaces with similar Fe(CN)$_6^{3-/4-}$ voltammetry. These observations demonstrate that the large differences in observed kinetics among the systems examined on validated surfaces cannot be a consequence solely of residual defects.

A related issue is possible distortions to voltammetry caused by nonplanar diffusion to defects, possibly leading to microelectrode array behavior. As discussed previously, the assumption of planar diffusion will break down if the spacing between defects is comparable to or greater than $(D\tau)^{1/2}$, where D is the diffusion coefficient and τ is electrolysis time. Such distortions are unlikely to occur for validated HOPG surfaces, however, both because the scan rates used for HOPG are relatively slow (yielding a relatively large $(D\tau)^{1/2}$) and because the validation procedure reduces the density of defects to very low levels.

Speaking more quantitatively, the fact that the k_0 values are upper limits and the k_{GC} values are lower limits indicates that the rate anisotropy between edge and basal plane is at least as large as that reported in Table II. For the purposes of this study, it is sufficient to conclude that all redox systems studied are slower on basal plane HOPG than on GC and that the anisotropy varies greatly from system to system. The precise magnitude of the anisotropy will remain uncertain as long as residual defects are possible.

A final technical issue to be considered here deals with the effect of impurity adsorption on observed kinetics, which is at least one of the important variables for GC.$^{4-8}$ Although basal HOPG surfaces were examined within 1 min of cleaving, some exposure to air and solution impurities was unavoidable. It was observed that k_0 for “fast” systems ($\Delta E_p < 400$ mV) did not vary greatly with time of air or solution exposure, while those with slow kinetics ($\Delta E_p > 400$ mV) exhibited an increasing ΔE_p with time. This observation is consistent with adsorption of impurities to defects rather than to basal plane, as is observed with intentional adsorbers such as AQDS.22

Taken together, these technical concerns reinforce the conclusion that k_{GC} values are lower limits of the true GC rate constants, while k_0 values are upper limits for the true basal plane HOPG rate constants. In addition, any errors in k_0 caused by residual defects or impurities will be most important for the slowest redox systems.

Let us now turn to the question of the origin of the often large differences between HOPG and GC rates. It is useful to note initially that most of the 13 systems studied exhibit fast electron transfer on laser-activated GC. Past experience with GC in several laboratories indicates that observed kinetics are very sensitive to surface history, with k_{GC} varying by several orders of magnitude for dopamine or Fe(CN)$_6^{3-/4-}$ for nominally similar GC electrodes with varying pretreatment.$^{13-15}$ For the laser-activated GC surface, however, the rates are consistently fast, often at the instrumental limit for rate constant determination. There may be significant variations in k_{GC} which are masked by the instrumental limit, but clearly the rates are high with only a few exceptions.

In contrast, basal rates for all systems are slower and cover a wider range. The organic complexes exhibit a proton-assisted electron-transfer mechanism involving protons as slow ($\Delta E_p > 450$ mV) on basal plane. Considering Table II, it is clear that all of the organic systems with multistep electron transfer mechanisms involving protons are slow ($\Delta E_p > 450$ mV) on basal plane. There could be several mechanisms which promote fast electron transfer at defects for reactions involving protons. Cabaniss et al. proposed a proton-assisted electron-transfer mechanism involving protons which is slower on basal plane than on GC and that the anisotropy varies greatly from system to system. The precise magnitude of the anisotropy will remain uncertain as long as residual defects are possible.

Table II. Composite Redox Potential and Kinetic Data

<table>
<thead>
<tr>
<th>System</th>
<th>$E_{1/2}$ (V vs SCCE)</th>
<th>ΔE_p (mV)</th>
<th>k_0 (cm/s)</th>
<th>k_{GC} (cm/s)</th>
<th>k_{GC}/k_0</th>
<th>k_{GC}/k_{GC}</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 IrCl$_5^{2-/3-}$</td>
<td>0.70</td>
<td>146</td>
<td>0.003</td>
<td>>0.5</td>
<td>>200</td>
<td>2 \times 104</td>
<td>47</td>
</tr>
<tr>
<td>2 Ru(NH$_3$)$_6^{2+/3+}$</td>
<td>-0.19</td>
<td>285</td>
<td>9×10^{-4}</td>
<td>>0.4</td>
<td>>400</td>
<td>4000</td>
<td>25, 45</td>
</tr>
<tr>
<td>3 Co(phen)$_3^{2+/3+}$</td>
<td>0.10</td>
<td>715</td>
<td>2×10^{-8}</td>
<td>>0.08</td>
<td>>4000</td>
<td>40</td>
<td>49</td>
</tr>
<tr>
<td>4 MV$_2^{3+/4+}$</td>
<td>-0.67</td>
<td>76</td>
<td>0.017</td>
<td>>0.1</td>
<td>>6</td>
<td>104</td>
<td>50</td>
</tr>
<tr>
<td>5 Fe(CN)$_6^{3-/4-}$</td>
<td>0.95</td>
<td>2 $\times 10^{-8}$</td>
<td>>0.07</td>
<td>>2</td>
<td>>3 $\times 10^4$</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>6 Fe(CN)$_6^{3-/4-}$</td>
<td>0.25</td>
<td>700–1370</td>
<td>7×10^{-8}</td>
<td>>0.6</td>
<td>>6 $\times 10^4$</td>
<td>2 $\times 10^4$</td>
<td>52, 53</td>
</tr>
<tr>
<td>7 Co(phen)$_2^{3+/2+}$</td>
<td>-0.48</td>
<td>770</td>
<td>2×10^{-5}</td>
<td>>0.01</td>
<td>0.03</td>
<td>200</td>
<td>54</td>
</tr>
<tr>
<td>8 Ru(phen)$_2^{3+/2+}$</td>
<td>0.41</td>
<td>502</td>
<td>1×10^{-4}</td>
<td>>0.5</td>
<td>>5000</td>
<td>4000</td>
<td>48</td>
</tr>
<tr>
<td>9 AQDS</td>
<td>-0.14</td>
<td>870</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 dopamine</td>
<td>0.51</td>
<td>1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 4-methylcatechol</td>
<td>0.40</td>
<td>460</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 DOPAC</td>
<td>0.31</td>
<td>370</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 6-hydroxydopamine</td>
<td>-0.31</td>
<td>840</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Average of organic systems on laser activated GC. b On validated HOPG basal plane surfaces. c Laser-activated HOPG, after three 50 MW/cm2 pulses ex situ. d Laser-activated GC, after three 25 MW/cm2 pulses in situ. e Ratio of laser-activated GC rate constant to validated HOPG rate constant. f Homogeneous self-exchange rate, with literature reference. g Value for HOPG surface exhibiting minimum AQDS adsorption, from ref 23.
protons are very slow on basal plane HOPG and fast on defects in the redox system, thus accelerating electron transfer at defects in the redox systems first, we may suspect Fe(CN)₆³⁻⁻ to be the redox system.

The relationship between k_{OE} and k_{EC} is plotted in Figure 4. Marcus proposed the simplest form of the relationship between k_0 and k_{EC} (eq 1), which is expected to apply in the absence of work terms introduced by the electrode:

$$k_{EC} = k_{OE}^{1/2} = k_0^{1/2} Z_{el}$$

where Z_{OE} and Z_{el} are the associated frequency factors (usually taken as 10^{11} M⁻¹ cm⁻² s⁻¹ and 10^4 cm s⁻¹, respectively). Several investigations support eq 1 for Hg and Pt electrodes for a variety of apparently outer sphere redox systems. As pointed out by Weaver, however, eq 1 neglects several potentially important work terms which lead to generally smaller k_0 values than those predicted from eq 1. Weaver’s treatment predicts a linear dependence of work-corrected log k_{OE} on log k_{EC} with a slope of 0.5. Since the k_{OE} values are at or near the instrumental limit, no correlation could be observed with k_{OE} for GC electrodes. Ignoring Fe(CN)₆³⁻⁻⁻, the seven apparently uncomplicated systems show a trend with k_{EC} (Figure 4), but the k_0 values are 3–5 orders of magnitude lower than that predicted from eq 1. In the absence of some unknown mechanistic complication which requires edge sites, this rate shortfall must be caused either by much larger work terms for HOPG or by some physical property of HOPG, or both.

Basal plane HOPG differs from GC in several ways which could affect electron-transfer kinetics. It is hydrophobic, has a relatively high resistance normal to the surface, has a low density of electronic states compared to metals or GC, and has unusual double layer effects related to its semimetal character.

After eliminating the systems with obvious proton involvement, there remain seven inorganic complexes and MV³⁺/⁻. These systems all involve one-electron transfers with no major changes in coordination geometry. The reasons for large rate differences between GC and HOPG for these systems should fall into two classes. First, the redox systems may vary in mechanism or homogenous self-exchange rate (k_{EC}), thus affecting their kinetics with presumably any electrode material. Second, the reason may involve the nature of HOPG itself, particularly some difference in physical properties between basal plane HOPG and GC. Considering the redox systems first, we may suspect Fe(CN)₆³⁻⁻⁻ to be unusual because of the well-known involvement of K⁺ in electron transfer. It has been concluded that K⁺ is involved in the Fe(CN)₆³⁻⁻⁻ transition state and that variations in cation identity and concentration strongly affect the observed rate. It is possible that this K⁺ effect requires edge plane sites and cannot operate on basal plane, thus leading to very low basal rates. The large decrease in k_{OE} for Fe(CN)₆³⁻⁻⁻ by intentional anthraquinone adsorption reinforces the importance of surface sites for fast kinetics of Fe(CN)₆³⁻⁻⁻ at carbon.

The relationship between k_{OE}, k_0, and homogeneous self-exchange rate, k_{EC}, is plotted in Figure 4. Marcus proposed the simplest form of the relationship between k_0 and k_{EC} (eq 1), which is expected to apply in the absence of work terms introduced by the electrode:

$$k_{EC} = k_{OE}^{1/2} = k_0^{1/2} Z_{el}$$

where Z_{OE} and Z_{el} are the associated frequency factors (usually taken as 10^{11} M⁻¹ cm⁻² s⁻¹ and 10^4 cm s⁻¹, respectively). Several investigations support eq 1 for Hg and Pt electrodes for a variety of apparently outer sphere redox systems. As pointed out by Weaver, the slope of the line in Figure 4 is plotted in Figure 4. Marcus proposed the simplest form of the relationship between k_0 and k_{EC} (eq 1), which is expected to apply in the absence of work terms introduced by the electrode:

$$k_{EC} = k_{OE}^{1/2} = k_0^{1/2} Z_{el}$$

where Z_{OE} and Z_{el} are the associated frequency factors (usually taken as 10^{11} M⁻¹ cm⁻² s⁻¹ and 10^4 cm s⁻¹, respectively). Several investigations support eq 1 for Hg and Pt electrodes for a variety of apparently outer sphere redox systems. As pointed out by Weaver, however, eq 1 neglects several potentially important work terms which lead to generally smaller k_0 values than those predicted from eq 1. Weaver’s treatment predicts a linear dependence of work-corrected log k_{OE} on log k_{EC} with a slope of 0.5. Since the k_{OE} values are at or near the instrumental limit, no correlation could be observed with k_{OE} for GC electrodes. Ignoring Fe(CN)₆³⁻⁻⁻, the seven apparently uncomplicated systems show a trend with k_{EC} (Figure 4), but the k_0 values are 3–5 orders of magnitude lower than that predicted from eq 1. In the absence of some unknown mechanistic complication which requires edge sites, this rate shortfall must be caused either by much larger work terms for HOPG or by some physical property of HOPG, or both.

Basal plane HOPG differs from GC in several ways which could affect electron-transfer kinetics. It is hydrophobic, has a relatively high resistance normal to the surface, has a low density of electronic states compared to metals or GC, and has unusual double layer effects related to its semimetal character. While the list of “uncomplicated” systems is too short to establish the relative importance of these effects on basal plane kinetics, some observations deserve note. First, hydrophobic effects cannot be the sole cause of slow kinetics since systems of similar charge and structure, and presumably hydrophobicity (e.g., Fe(phen)₃³⁻⁻⁻ and Co(phen)₃²⁻⁻⁻), have very different rates. Furthermore, basal rates are largely independent of redox system charge. Second, the low density of electronic states of HOPG would yield less than 1.0 Ω of uncompensated resistance and would be roughly equal for all systems. Third, any unusual double layer or space charge effects for basal plane should vary greatly with the potential relative to the pzc. The pzc for HOPG has been reported as −0.24 V vs SSCE for a variety of aqueous electrolytes, and that value was confirmed here for 1 M KCl. As shown in Figure 5, the observed rates show no obvious perturbations when $E_{1/2}$ is near the pzc, with fast and slow rates observed on either side of the pzc. So space charge capacitance (and associated potential drop) and double layer effects are unlikely to be the sole reasons for low k_0. Fourth, the low density of states (DOS) near the Fermi level of HOPG could slow down electron transfer relative to GC. According to Gerischer et al., the DOS for HOPG reaches a minimum of 2.2×10^{-5} states atom⁻¹ eV⁻¹ at the bulk Fermi level of graphite but increases rapidly away from this potential. This minimum is approximately 2 orders of magnitude lower than that of HOPG.
Although the low DOS for HOPG may be a factor in depressing k_{b0} compared to $k_{b0}^{	ext{GC}}$, the dependence of k_{b0} on redox system $E_{1/2}$ is not that predicted if the DOS is the only important factor.

CONCLUSIONS

The 13 redox systems exhibit a wide range of electron-transfer rates on the basal plane of HOPG, but all are slower on basal plane graphite than on GC. Although the magnitudes of the differences in rate between GC and HOPG are somewhat uncertain due to residual defects, it is clear that rates on basal plane HOPG are 1–5 orders of magnitude lower than those on GC. The results permit identification of at least three major factors affecting electron transfer at carbon: charge-transfer mechanisms which are promoted by edge plane (e.g. those involving proton transfer), physico-chemical properties of basal plane which retard electron transfer (e.g. low density of electronic states), and the homogeneous self-exchange rate of the redox system involved. One or more of these effects can lead to major differences in observed rates for different carbon electrode materials and surface pretreatments. By continuing to examine both ordered graphite and GC surfaces, we intend to characterize these major factors affecting observed rates on carbon electrodes more completely, with the long-range goal of providing a structural basis for electron-transfer reactivity.

ACKNOWLEDGMENT

The authors thank Mark McDermott, Christie Allred McDermott, Robert Jaworski, and Stephen Feldberg for useful discussions and Arthur Moore at Union Carbide for the gift of HOPG. The work was supported by the Air Force Office of Scientific Research.