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ABSTRACT: Resonant injection and resulting charge storage were examined in a large-area carbon/tetraphenylporphyrin(TPP)/
LiF/carbon junction, where the LiF layer provides mobile ions in acetonitrile (ACN) vapor. Resonant electron transfer into TPP
molecules occurs at <+1 V in the presence of mobile ions, enabled by ionic screening of the carbon electrode. Injection of holes, i.e.
formation of the TPP radical cation, inside the junction was monitored by in situ photocurrent measurements. Following the
injection, despite the lack of a redox counter-reaction or conventional electrolyte, persistent faradaic current peaks dominate the IV
cycle of the junction (±2 V) in ACN vapor, enhancing the reversible charge storage by a factor of 78 compared to that in vacuum.

Molecular junctions (MJs) have been studied for their
charge transport characteristics with the anticipation of

realizing new electronic tasks that can enhance semiconductor
technologies.1−4 Redox-active molecules and metal oxides have
been employed in MJs to modulate the charge transport
features, successfully resulting in enhanced current rectification
and conductance switching in solid state,5−10 vapor,11−13 and
liquid environments.14−19 We reported recently that redox
reactions can occur in solid state MJs in the absence of
electrolyte ions or a redox counter-reaction, with the oxidized
or reduced molecule stabilized by the image charge on the
opposing electrode.20 Charge storage exceeded that of a
conventional parallel plate capacitor and was accompanied by
redox kinetics absent in a parallel plate. However, the dry redox
processes could only be initiated at high bias (> ± 5 V), thus
limiting their utility and charge storage. In this study, we show
that mobile ions added to a redox-active MJ enables resonant
electron transfer between the molecular layer and the adjacent
carbon electrode, and greatly increases charge storage.
The device structure and tetraphenylporphyrin (TPP)

monomer are shown in Figure 1, along with the energy levels
predicted from DFT for TPP and measured for the electron-
beam carbon (eC) electrode. The HOMO of TPP monomer
(−4.9 eV relative to vacuum level)21 is close to the Fermi level
of eC (−4.8 eV, Figure 1C),22 which enables electron transfer
from TPP molecules to the positively charged eC contact in
the junction. Fabrication details of carbon/TPP/LiF/carbon
MJ and thickness (d) determinations are provided in the
Supporting Information (Scheme S1 and Figure S1).
A vacuum probe station was used to characterize the

electronic properties of the TPP/LiF MJ in either vacuum or
acetonitrile (ACN) vapor (Figure S2), which was shown
previously to mobilize ions inside molecular junctions12,13 as
well as in redox polymer films.23,24 Li+ and F− ions show high
mobility on the edges of amorphous interfacial regions in their
nanostructured crystallites compared to their bulk micro-
structures.25,26 As a first approximation, we assume that Li+

and F− ions are immobile in the as-made MJ in vacuum, but

become mobile after permeation of ACN into MJs.13 The
UV−vis spectrum of TPP oligomers grown on eC reveals the
Soret band at 430 nm and Q-bands at 520−655 nm which are
broadened and red-shifted compared to that of the TPP
monomer in solution (Figures 1D and S3).21 Deposition of 20
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Figure 1. (A) Molecular junction structure with layer thicknesses. (B)
Molecular structure of TPP monomer. (C) HOMO and LUMO of
TPP, and Fermi level of eC, relative to vacuum. UV−vis (D) and
Raman (E) spectra of TPP monomer and TPP oligomers on eC/Au
with and without LiF layer.
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nm thick LiF on the TPP layer causes negligible alterations in
either the TPP absorption (1D) or Raman spectrum (1E)
indicating minimal structural changes in dry conditions. Raman
spectra confirm the molecular integrity of oligomers before
(1E) and after (Figure S4) deposition of the top layers,
completing the MJ.
The current−voltage (IV) behavior of the TPP/LiF junction

was first examined in vacuum (<10−5 Torr), where it behaves
like a parallel-plate capacitor, with a flat current response up to
±2 V (Figure 2A). As the bias reaches +5 V, a reverse band

appears between −1 and −4 V. This behavior is attributed to
bias-induced removal of electrons from the TPP HOMO
during positive bias scans.20 In vacuum, LiF acts as a transport
barrier; thus, charge injected by positive bias is retained in the
TPP layer and stabilized by the negative image charge on the
opposite electrode. When the same TPP/LiF junction is
exposed to ACN vapor (Figure 2B), the IV exhibits much
larger currents with apparent faradaic peaks reminiscent of
solution-phase cyclic voltammetry, despite the lack of a redox
counter-reaction, electrolyte solution, or reference electrode.
As the positive scan expands from +1 to +2 V, it reveals a
positive peak at +1.01 V and a reverse peak at +0.84 V, plus
additional features as the scan continues to negative bias. The
±2 V scan in vacuum from panel 2A is included in 2B to
indicate the magnitude of the ACN-induced response, as
discussed quantitatively next.
Charge integrated under the IV curves was divided into four

quadrants in Figure 2C (Q1 to Q4) and compared in Table 1
for ±2 V scans in vacuum and ACN vapor. First, the total
charge induced by bias scans is larger in ACN compared to
vacuum by a factor of 78, indicating greater charge storage with
ACN present. Based on an estimated TPP coverage of 1 ×
10−9 mol/cm2 for a 20 nm film, Q1 corresponds to oxidation of
11% of the TPP present. Second, 108% of the positive charge
(Q1 + Q4) is recovered during the negative scan (Q2 + Q3) in
vacuum and 107% in ACN, implying low leakage across the
LiF barrier, and efficient charge storage in both cases.

Third, Q2 is 48% smaller than Q1, indicating that not all the
charge injected during the V = 0 to +2 V scan is recovered
during the reverse scan (+2 to 0 V). However, the 107%
recovery indicates that the remaining charge in Q1 is recovered
during the negative bias scan. Quadrant values for additional
scan ranges are provided in Table S1. The large ACN effect
was not observed for a TPP junction with aluminum oxide, a
nonionic transport barrier (Figure S5), implying that mobile
ions are necessary for the increase in charge storage. Minor
changes after 1000 IV cycles in vacuum (Figure S6) and 500
cycles in ACN (Figure S7) indicate high repeatability of the
charge/discharge process. The large increase in current with
ACN exposure was reproducible and ranged from a factor of
19 to 78 for seven different MJs (Figure S8 and Table S2).
The IV curves for the TPP20/LiF9 MJ in vacuum and ACN

vapor are compared to that for a MJ containing only 20-nm-
thick TPP in Figure 2D, determined as described in Figure S9.
As noted for MJs of different molecular structures with d > 6
nm, the onset of conduction typically starts after +1 V due to
injection of carriers into the molecular layer,27 followed by
sequential tunneling or hopping transport.28,29 In ACN vapor,
however, the increase in current starts as low as ∼+0.5 V in a
TPP/LiF junction, which is 1.05 V lower than onset in the
TPP-only junction, implying a significantly lower energy
barrier for electron transfer from the TPP layer to the
positively biased electrode due to the presence of mobile ions.
Ion-assisted charge injection into the molecular layer was

investigated further by photocurrent (PC) measurements. PC
response of a junction obtained under UV−vis light is strongly
correlated to the optical absorption spectrum of its molecular
layer.21,30,31 Oxidation of TPP in benzonitrile yields an
absorption band at 700 nm in Figure 3A, which is attributed
to the radical cation (TPP•+).32 The PC spectrum of TPP/LiF
junction in vacuum under +1 or +2 V bias shows PC peaks
similar to the Q-bands of the neutral TPP monomer in
solution and its oligomers in the film bonded to eC (Figure

Figure 2. IV curves for a TPP/LiF junction initiated in positive
direction at 1000 V/s (A) in vacuum to successively larger bias, as
indicated, and (B) after exposure to ACN vapor. (C) Integration
quadrants in ACN vapor. (D) Overlay of ACN (blue) and vacuum
(black) scans for TPP/LiF and that of TPP (d = 20 nm) lacking LiF
(red).

Table 1. Charge Observed under IV Curves Using Notation
of Figure 2C

charge, nC VAC, 2 V ACN, 2 V ACN/VAC

Q1 0.20 22.69 114.5
Q2 −0.18 −10.94 59.8
Q3 −0.21 −19.53 91.9
Q4 0.17 5.87 34.6
Recovery 108% 107%

Figure 3. (A) UV−vis spectra of TPP monomer in benzonitrile before
and after oxidation, and a TPP oligomer film on eC. (B) Photocurrent
spectra of a TPP/LiF MJ in vacuum at +1 and +2 V bias, plus same
MJ after exposure to ACN vapor and application of +1.4 V bias.
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3B).21 Upon exposure to ACN, the PC spectrum of the same
junction with a +1.4 V bias shows a PC peak at 730 nm while
the Q-bands observed in vacuum diminish. This new peak is
assigned to the formation of TPP•+ by comparison with the
absorption of oxidized TPP in solution (Figures 3A and S3).32

Therefore, the peak at +1.01 V (Figure 2) is associated with
formation of TPP•+ cations, while the reverse peak at +0.84 V
is due to the reduction of TPP•+ back to TPP.
Figure 4 is a schematic mechanism for the effect of ACN on

a molecule/LiF device, with HOMO and LUMO energies of

individual subunits indicated. The HOMO energy is set at
−5.5 V for clarity (Figure 4A).
The linear electric field (dashed red lines) assumed for

vacuum causes electron transfer from TPP to its adjacent
electrode (panel 4B), resulting in a 2−3 times increase in
capacitance over that for a parallel plate for V ≥ 5 V.20

However, a large bias is required for the high electric field
necessary to bring the HOMO orbital within tunneling
distance of the left electrode (<∼5 nm, panel 4B). In ACN
vapor, the Li+ and F¯ ions become mobile, establishing a
nonlinear electric field (Figure 4C and 4D) which is predicted
with standard Gouy−Chapman−Stern double layer theory.
The low-voltage capacitance increases due to the high
contribution of the LiF layer, acting like an electrolytic
capacitor. However, even very high capacitance across the LiF
layer in series with the capacitance across the TPP layer
(estimated as 0.33 nF for ε = 6) cannot account for the 78-fold
increase in capacitance between vacuum and ACN vapor. The
large increase may be explained by oxidation of the TPP
accompanied by partial F− penetration into the TPP film
(panel 4C and 4D). Not only does this provide faradaic charge
storage with compensation of the TPP•+ space charge by F−, it
also provides an electron conduction channel within the TPP
layer through semivacant HOMO levels. The result is
analogous to a “half-battery” containing mobile ions but only
one redox reaction (TPP/TPP•+), compensated by the image
charge in the electrode adjacent to the LiF layer and by ion
motion.

Seminal work by Pickup and Murray34,35 and the Wrighton
group36−38 examined electron and ion transport in redox
polymer films to realize “macromolecular electronics,”33

including redox-based diodes,39,40 transistors,36,38,41 and light
emitters.42,43 These devices were all based on transport by
Marcus-controlled redox exchange, with transport distances in
the range 100−2500 nm. In contrast, the very thin molecular
layers of MJs permit much faster response due to short
transport distances for either electrons or ions. In addition to
redox exchange, the 5−20 nm molecular layers of MJs can
exhibit tunneling,44 field ionization,45 photocurrents,46 and
direct injection into molecular orbitals.46−48 Such transport
can be not only very fast but also temperature independent,
with one example permitting >5 A/cm2 across 22 nm at T < 10
K.45

Reduction of the “injection barrier”49,50 by ∼1 V in ACN
vapor (Figure 2D) permits near-resonant transfer of electrons
from the TPP HOMO to the electrode. A similar effect was
considered for much thicker films (>100 nm) in organic light-
emitting diodes,51−53 but its utility was limited by very slow
response (∼minutes) and the low interior electric field
hindering transport. In molecular junctions, the short transport
distance requires a much lower internal field, and ion
concentrations required for the effects shown in Figure 4D
are readily achieved.
In summary, charge can be stored in TPP/LiF junctions by

reversible oxidation of TPP to TPP•+ in the presence of mobile
ions, increasing the effective capacitance by a factor of 78 over
that observed in vacuum. In addition, the TPP layer becomes
an electronic conductor due to generation of half-filled
molecular orbitals. Ion screening in MJs is analogous to
double layer formation essential to conventional electro-
chemistry, and can greatly reduce the charge injection barriers
in molecular junctions with thicknesses in the range 10−30
nm. Electrode screening by ions may have major consequences
to transport in molecular electronic devices. The prospect of
both resonant charge injection and high charge storage density
enabled by mobile ions may result in electronic effects distinct
from those of silicon and conventional semiconductors.
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