SM II

Mixtures of Gases

- (Vapor Pressure)
- Partial Pressure
- Dalton's Law (IGL)
- $\mathrm{App}^{\mathrm{s}}$ of Dalton's Law

Ref 5: 4
Prob FUP: 5: 9, 10
E of C: 5: 45, 46, 50

Adv Rdg 5: 6

Definitions:
1.) Mole Fraction, X, of component i

$$
\mathrm{X}_{\mathrm{i}}=\frac{\mathrm{n}_{\mathrm{i}}}{\mathrm{n}_{\mathrm{tot}}} \quad ; \quad\left(\sum \mathrm{X}_{\mathrm{i}}=1\right)
$$

Ex. mix. of $2 \mathrm{~mol} \mathrm{He} \& 3 \mathrm{~mol} \mathrm{O} \mathrm{O}_{2}$

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{tot}}=5 \mathrm{~mol} \\
& \mathrm{X}_{\mathrm{He}}=\frac{2 \mathrm{~mol}}{5 \mathrm{~mol}}=0.4, \quad \mathrm{X}_{\mathrm{O} 2}=\frac{3 \mathrm{~mol}}{5 \mathrm{~mol}}=0.6
\end{aligned}
$$

2.) Partial Pressure (PP)

$$
\mathrm{P}_{\mathrm{i}}=\mathrm{X}_{\mathrm{i}} \mathrm{P}_{\text {tot }}
$$

Ex. cont ${ }^{\mathrm{d}}$: if $\mathrm{P}_{\text {tot }}=2 \mathrm{~atm}$,

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{He}}=0.4 \times 2 \mathrm{~atm}=0.8 \mathrm{~atm} \\
& \mathrm{P}_{\mathrm{O} 2}=0.6 \times 2 \mathrm{~atm}=1.2 \mathrm{~atm}
\end{aligned}
$$

chem101/3, wi2010

Dalton's Law of Partial Pressures

$$
\mathrm{P}_{\mathrm{tot}}=\Sigma \mathrm{P}_{\mathrm{i}}^{*}
$$

where $\mathrm{P}_{\mathrm{i}}{ }^{*}=$ pressure of component i if it where there alone in container ("alone pressure")
or equivalent

$$
\mathrm{P}_{\mathrm{i}}=\mathrm{P}_{\mathrm{i}}^{*} \quad\left(\text { where } P_{i}=X_{i} P_{\text {too }}\right)
$$

in words: the partial pressure of gas in a mixture is the same as the "alone pressure"
or:
partial pressure is not affected
by presence of other gases
chem101/3, wi2010
Dalton's Law ...
also:
can apply IGL to individual components \& to mixture as a whole
$P_{i} V=n_{i} R T$,
$\mathrm{P}_{\text {tot }} \mathrm{V}=\mathrm{n}_{\text {tot }} \mathrm{R}$ T
note: V is volume of container

Comment:

- applicable strictly only to ideal gases
(b/c no attraction/repulsion between molecules;
molecules far apart)
- in practice, used also
for non-ideal ("real") gases, even for vapors
b.) What is the mole fraction (X) of each gas? can get from definition of partial pressures
$\mathrm{P}_{\mathrm{i}}=\mathrm{X}_{\mathrm{i}} \mathrm{P}_{\text {tot }}, \quad \mathrm{X}_{\mathrm{i}}=\frac{\mathrm{P}_{\mathrm{i}}}{\mathrm{P}_{\text {tot }}}$
(also, generally, PP ratios $=\mathrm{X}$ ratios)
$X_{\text {He }}=\frac{85}{145}=\underline{\underline{0.59}} \quad X_{\text {CH4 }}=\frac{25}{145}=\underline{\underline{0.17}}$
$\mathrm{X}_{\mathrm{Ar}}=$ \qquad $=\underline{\underline{0.24}}$
$\mathrm{P}_{\text {tot }}=(85+25+35)=\underline{\underline{145 \mathrm{kPa}}}$
Assume: Dalton's Law valid throughout

$$
\begin{aligned}
\mathrm{P}_{\mathrm{He}}=\mathrm{P}_{\mathrm{He}}^{*} & =\underline{85 \mathrm{kPa}}, \quad \mathrm{P}_{\mathrm{CH} 4}=\mathrm{P}_{\mathrm{CH} 4}^{*}=\underline{\underline{25 \mathrm{kPa}}} \\
\mathrm{P}_{\mathrm{Ar}}=\mathrm{P}_{\mathrm{Ar}}^{*} & =\frac{\mathrm{n}_{\mathrm{Ar}} \mathrm{R} \mathrm{~T}}{\mathrm{~V}} \\
& =\frac{(0.35 \mathrm{~mol})(8.31 \mathrm{kPaL} / \mathrm{molK})(298 \mathrm{~K})}{25 \mathrm{~L}} \\
& =35 \mathrm{kPa}
\end{aligned}
$$

$$
\mathrm{P}_{\mathrm{tot}}=(85+25+35)=145 \mathrm{kPa}
$$

Collecting Gases over Liquids

 see Pet. Fig. 6.15"Gas" contains "desired gas" + "vapor gas"
i. e., it is a mix. of gases

Let's assume Dalton's Law holds, then
$\mathrm{P}_{\text {tot }}=\mathrm{P}$ (desired gas) +VP (of "liquid")
VP is a function of T ,
look up from Tables,
e.g., CDS, Table \#9; if liquid = water

Pet. Fig. 6.15 Collecting Gases over Liquids

Stoichiometry w/ PP's

20 L of H_{2} collected over water (i.e., "wet gas");
$\mathrm{P}_{\mathrm{atm}}=93.0 \mathrm{kPa}, \mathrm{T}=22^{\circ} \mathrm{C}$.
moles of H_{2} ?
must deduct VP of $\mathrm{H}_{2} \mathrm{O}$ from $P_{\text {tot }}=P_{\text {atm }}$ to get PP of H_{2} acc. to Dalton's Law; then apply IGL to get moles of H_{2}

$$
\begin{aligned}
\mathrm{P}_{\mathrm{H} 2} & =\mathrm{P}_{\mathrm{atm}}-\mathrm{VP}^{22^{\circ} \mathrm{C}} \text { of } \mathrm{H}_{2} \mathrm{O} \quad(\text { from CDS \#9 }) \\
& =93.0 \mathrm{kPa}-19.8 \text { torr }\left(\frac{101.3 \mathrm{kPa}}{760 \text { torr }}\right) \\
& =(93.0-2.6) \mathrm{kPa}=90.4 \mathrm{kPa}
\end{aligned}
$$

moles of H_{2}

$$
\begin{aligned}
\mathrm{n}_{\mathrm{H} 2}=\frac{\mathrm{P}_{\mathrm{H} 2} \mathrm{~V}}{\mathrm{RT}} & =\frac{(90.4 \mathrm{kPa})(20 \mathrm{~L})}{(8.31 \mathrm{kPaL} / \mathrm{molK})(295 \mathrm{~K})} \\
& =\underline{\underline{0.74 \mathrm{~mol} \mathrm{H}_{\underline{2}}}}
\end{aligned}
$$

(assuming Dalton's Law is valid)

- convenient for gas rxns
(even if solids and/or liquids are present, as long as their vapor pressure is negligible and as long as they are not limiting reactants, often identified as "in xs")
- can use PP's in reaction tables
(instead of moles (n) or conc. (c))
$b / c P P \propto n$

Ex.
Consider the reaction $\mathrm{NO}_{2(\mathrm{~g})} \rightarrow \mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$, unbalanced;
$\mathrm{P}_{\text {initial }}=82 \mathrm{kPa}$; no initial $\mathrm{N}_{2} \mathrm{O}_{4}$;
$\mathrm{P}_{\text {final }}=50 \mathrm{kPa}$
Determine final PP's of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$.

Ans.

Balanced Equation

$$
2 \mathrm{NO}_{2(\mathrm{~g})} \quad \rightarrow \quad \mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}
$$

I	82	0
C	-2 x	+x
F	$82-2 \mathrm{x}$	x

Dalton's: $\mathrm{P}_{\mathrm{tot}}=\mathrm{P}_{\mathrm{NO} 2}+\mathrm{P}_{\mathrm{N} 2 \mathrm{O} 4}$

$$
\begin{aligned}
& =(82-2 \mathrm{x})+\mathrm{x}=50 \\
& =82-\mathrm{x}=50 \\
& \mathrm{x}=82-50=\underline{\underline{32 \mathrm{kPa}}}
\end{aligned}
$$

$$
\mathrm{P}_{\mathrm{N} 2 \mathrm{O} 4}=\mathrm{x}=\underline{\underline{32 \mathrm{kPa}}}
$$

$$
\mathrm{P}_{\mathrm{NO} 2}=82-(2 \times 32)=18 \mathrm{kPa}
$$

chem101/3, wi2010
Extra Practice in PP Stoichiometry
Process in Nickel Refining:
$\mathrm{Ni}(\mathrm{s})+\mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{Ni}(\mathrm{CO})_{4}(\mathrm{~g})$
($\mathrm{Ni}(\mathrm{s})$ in xs, can be ignored since it's a solid, presumably w/t vapor pressure)

Initially no product present. Total pressure goes from 10 atm to 4 atm . What are the final partial pressures?

Ans. Balanced Equation

$$
\mathrm{Ni}(\mathrm{~s})+4 \mathrm{CO}(\mathrm{~g}) \rightarrow \mathrm{Ni}(\mathrm{CO})_{4}(\mathrm{~g})
$$

Reaction Table:

