chem101/3, wi2010 po 14-1 chem101/3, wi2010 po 14-2

CB VII

Molecular Orbital (MO) Theory

Ref 11: 3

Prob FUP: 11: 3, 4

E of C: 11: 32 - 37, 51

Adv Rdg 5: 1-5

General

further improvement on Lewis, VSEPR & VB theory;

resulting in better info on:

bond energy

bond order

magnetic properties of molecules

.

.....

chem101/3, wi2010

po 14-3

Basic Principles

Wave mechanical theory is applied to bonding in a molecule as a whole i.e., includes interaction of **all nuclei & e**-'s

Schroedinger equⁿ is solved for allowed wave states, or wave functions, Ψ , which, in turn, provide a description molecular orbitals (MO's)

as a result we get a set of discrete MO's describing energy & "location" of e-'s

important to realize that MO's cover the molecule as a whole (e⁻'s are "delocalized"), rather than being strictly located on or between individual atoms

chem101/3, wi2010

Basic Ideas

ро 14-4

- problem very complex
- no exact solutions exist
- various approximations are applied,
 esp. LCAO method
 ("linear combination of atomic orbitals")
- start off w/ AO's of bound atoms
- generally, combine AO's that are close in:
 proximity,
 orientation,
 energy
 to form MO's

po 14-5

chem101/3, wi2010

basic ideas ...

• use wavemechanical concepts, esp. aspects of wave interference (constructive and destructive) to construct MO's

generally,# of MO's = # of "originating" AO's

half of MO's are lower in energy than the originating AO's = bonding MO's

half of MO's are higher in energy ...

= antibonding MO's

 apply principles you know from AO Theory to fill a set MO's w/ e⁻'s as follows:

"Aufbau"

in ground state lowest energy MO's are occupied

"Pauli"

max. of 2 e⁻'s per MO;

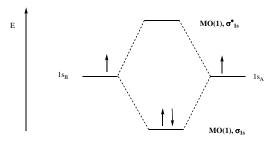
if 2 are present, they have opposite spins

"Hund"

if MO's are degenerate,

fill MO's singly first (w/ same spin)

before doubling up


chem101/3, wi2010

po 14-7

Application to H₂ Molecule

 $_{A}H$ - H_{B}

Energy Diagram

$$MO(1) = 1 s_A + 1 s_B$$

$$MO(2) = 1 s_A - 1 s_B$$

2 e-'s available, only the bonding MO, σ_{1s} , will be filled,

∴ H₂ stable !!

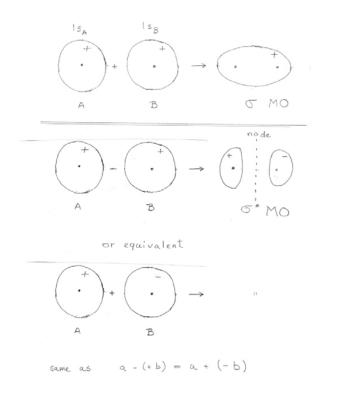
chem101/3, wi2010

po 14-8

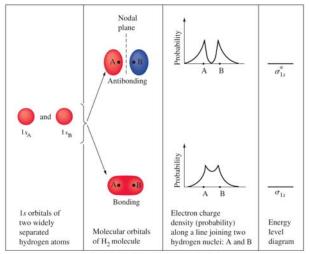
H₂ molecule ...

equivalent expression:

1s_A & 1s_B AO's combine


in - phase to form bonding MO's

&


out - of - phase to form antibonding MO's

po 14-6

Orbital Diagrams for H₂

Pet. Fig.11.20 MO Theory for H₂

Copyright @ 2007 Pearson Prentice Hall, Inc.

chem101/3, wi2010

po 14-1

Bond Order by MO Theory

General:

B.O. =
$$\frac{\text{bonding e}^{-\text{'s}} - \text{antibonding e}^{-\text{'s}}}{2}$$

for H₂:

B.O. =
$$\frac{2-0}{2} = 1$$
 (single bond)

in this case, agrees w/ Lewis theory

chem101/3, wi2010

po 14-12

po 14-10


Other Row 1 Species

see Pet. Fig. 11.21

evaluate for B.O. and stability:

species	B.O.	Existence
H_2^+	0.5	known
He ₂ ⁺	0.5	"expected
He ₂	0	unknown, not expected

Pet. Fig. 11.21 MO diagrams for diatomic row 1 species

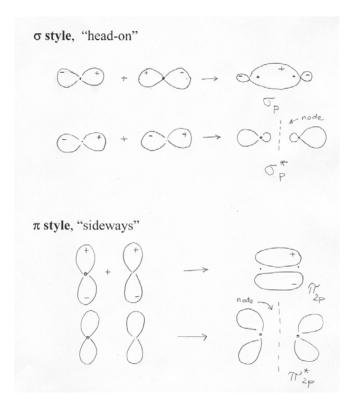
MO Theory for Row 2 Molecules (diatomic, homonuclear)

Generally,

can ignore core AO's (i.e., 1s AO's)

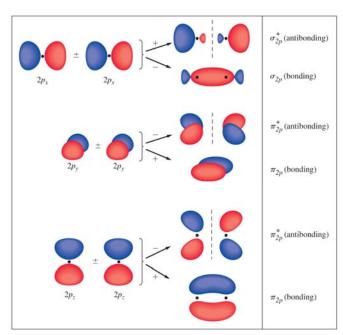
(because weak interaction; also, bonding & antibonding MO's cancel)

i.e., work w/ valence e-'s


significant combinations in row 2 orbitals:

$$2s AO's \longrightarrow \sigma_{2s} MO$$

chem101/3, wi2010


po 14-15

Combination of p AO's

chem101/3, wi2010

Pet. Fig. 11.23 MO's from 2p AO's

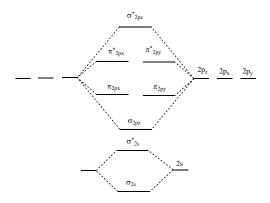
Copyright © 2007 Pearson Prentice Hall, Inc.

MO Energy Diagrams

 σ_{2s} lower than $\sigma_{2p},~\pi_{2p}$ (b/c originating 2s AO's are lower than 2p AO)

expect that σ_{2p} is lower than π_{2p} (σ_{2p} has more overlap than π_{2p})

"expected" MO diagram (HT Fig. 14.1)

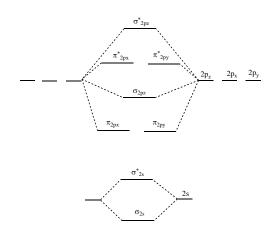

but exceptions are common

"modified" MO diagram (HT Fig. 14.2)

General MO Energy Diagram **Expected**

valid for O₂, F₂, (Ne₂)

HT Fig. 14.1


chem101/3, wi2010

po 14-1

General MO Energy Diagram Modified

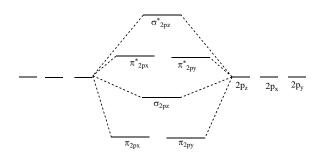
valid for Li₂ N₂

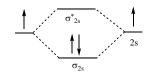
HT Fig.14.2

chem101/3, wi2010

no 14-20

Practice

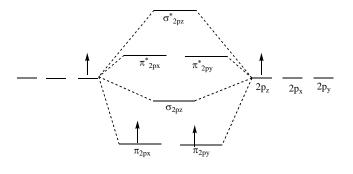

Complete MO Energy Diagrams for

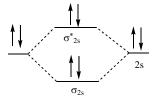

Li₂, B₂, N₂, O₂

- fill MO diagrams w/ e-'s
- determine B.O.
- · assess magnetism

For completeness sake, you may want to do Be₂, C₂, F₂, Ne₂ also

MO Energy Diagram for Li₂

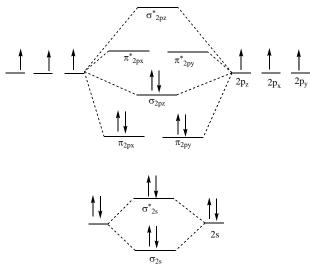



B.O. =
$$\frac{2-0}{2}$$
 =1

all e 's paired

∴ diamagnetic

MO Energy Diagram for B₂

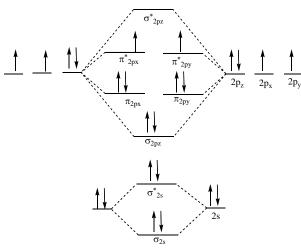


B.O. =
$$\frac{4-2}{2}$$
 =1

2 e⁻'s unpaired

∴ paramagnetic

MO Energy Diagram for N_2



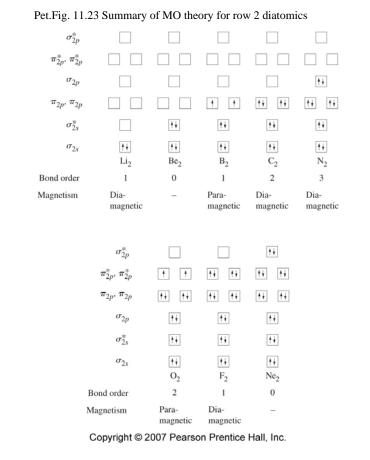
B.O.
$$=\frac{8-2}{2}=3$$

all e 's paired

: diamagnetic

MO Energy Diagram for O2

B.O. =
$$\frac{8-4}{2}$$
 = 2


2 e⁻'s unpaired

∴ paramagnetic

Summary

Pet. Fig. 11.25 provides a summary of MO's for all row 2 diatomic homonuclear molecules.

Derive, don't memorize

chem101/3, wi2010 po 14-27

Comments

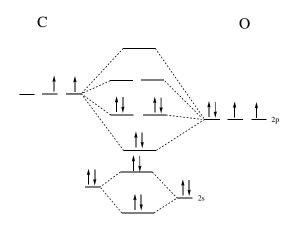
- Use the same diagrams to analyze (stability, B.O., magnetism ...) charged homonuclear species, such as N_2^+ , O_2^- , etc.
- similar analysis applies
 to row 3 diatomic molecules
 Na₂ Ar₂
 Combine 3s and 3p AO's to get
 σ_{3s}, σ_{3p}, π_{3p} MO's
 (again bonding & antibonding etc.)

chem101/3, wi2010

Heteronuclear Diatomics

po 14-28

(e.g., CO, NO)


when molecule contains O apply "**expected**" MO energy diagram,

but in a "distorted" form

(originating AO's of more e/n atom are lower in energy, causing this distortion)

see CO as an example, HT Fig.14.3

HT Fig. 14.3 MO Energy Diagram for CO

B.O. =
$$\frac{6-0}{2}$$
 = 3

all e's paired

∴ diamagnetic

Overall Comment on Bonding

- MO theory generally gives best results, but often very complicated
- in many cases, simpler theories are satisfactory
- "practicing chemists" use a mixture of all theories,

"whatever works best"

• e.g., in organic chem.:

for σ bonds: use VB theory, including hybridization of AO's

for π bonds: use MO theory, including

resonance ideas from Lewis theory