3-4

Older Bonding Concepts (CB III)

- VSEPR
- Lewis Diagrams
- Formal Charge

Ref 1: 4 - 7, 16

Prob 8th Ed 1: 3, 28 -30

9th Ed 1: 3, 27 -29

HMWK #4

Adv Rdg 2:3,4

VSEPR Theory

(Valence Shell Electron Pair Repulsion)

• predicts: 3D shape of molecules

• principle: e clouds will spread

as far apart as possible

e cloud (= "effective pair") can be

- bonding assembly (single, double, triple bond)
- lone pair (non-bonding)
- single e⁻ (± ?)

wi2009 3-3

VSEPR

Expected Geometries	
# of e ⁻ clouds	cloud arrangement
4	
3	
2	

wi2009

Practice: e⁻ clouds, geometry, hybridization

Octet Rule

"molecule is stable

if each atom is surrounded by 8 valence e-'s",

esp. valid for C, N, O

Ex. CO₂

Modifications

"element"

stable with

H group 2 (Be, Mg) group 13 (B, Al) row 3 + (P, S, ...)

N.B.: 1.)

2.)

Lewis Structures

 $(e^- dot diagrams)$

general derivation:

- account for all valence e's,
- adher to "octet rule"

(in CHEM 101 get elaborate rules; a simpler approach is sufficient in Organic: trial & error; will become intuitive)

Lewis structure shows

- all valence e⁻'s
- bonding e⁻'s as dashes
- non-bonding e⁻'s as dots (often omitted !!)
- place + and charges

Required Skills:

- 1. Is proposed Lewis structure valid?
- 2. Given atom connection, place e⁻'s.

wi2009 3-7

Practice

Is $H = \begin{matrix} \downarrow \\ \downarrow \\ \downarrow \end{matrix}$ valid for CH_3CONH_2 ; C_2H_5NO ?

wi2009 3-8

Formal Charge (F.C.)

shows charge on *individual* atom(s)

is due to difference in charge between

- # of e⁻'s associated w/ atom in cmpd &
- # of e⁻'s in neutral atom

"associated e"'s":

all non-bonding e⁻'s
+
1/2 of bonding e⁻'s

3-11

F.C. Practice

F. C. Practice

1.)

2.)

wi2009

CB III Summary

Definition of e⁻ cloud

Derivation of Hybridization/Geometry

4 clouds, tetrahedral, sp³

3 clouds, trig. planar, sp²

2 clouds, linear, sp

Octet Rule, incl. modifications

Lewis structures:

dashes, lone pairs, F.C.'s

Determine F.C.'s