Carbonyl Alpha Chem. I

- Keto/ Enol Tautomerism
- α H Acidity

Halogenation Rxns

Ref 17: 1 - 3

Prob 17: 1-5; 37 - 39 (8th ed.)

17: 1 – 5; 36 - 38 (9th ed.)

Adv Rdg 17: 7C; 19: 3 - 6

α Hydrogens

Practice: # of α H's

po 21-4

chem263, fa2009

po 21-3

Tautomers

- Def: Isomers where location of α H as changed (normally, an acidic H)
 - otherwise no change in connectivity (but single/double bond change may occur)
 - generally, rapid equil. between tautomers

most important: **keto/ enol** tautomerism

applies to any carbonyl cmpd with $\,\alpha\,$ H

chem263, fa2009

Practice

Practice	
"keto"	"enol"
Q	ОН
CI	OH
ОН	OH
	OH OH more stable; more substituted C=C
	OH OH more stable; "conjugated"
	OH

Extent of Enolization

Normally: keto form more stable; e.g.

But enols, if stabilized by conjugation, become more dominant; esp. **β-dicarbonyl**

Rxn Mech.'s

enolization is catalyzed by a.) acid or b.)base a.) acid

b.) base

chem263, fa2009

po 21-7

Acidity

- "keto" cmpds are slightly acidic
- loose α H as H⁺
- b/c enolate (= conj. base of "keto") is resonance stabilized

Generally, less acidic than ROH can get more acidic if keto cmpd has doubly activated α H;

esp.,
$$\beta$$
-dicarbonyl

chem263, fa2009

List of Acidity of Carbonyl Cmpds

cmpd	structure	pKa
amide		30
ester		25
ketone		19
aldehyde		17
1,3-diester		13
1,3-ketoester	0 0	11
1,3-diketone		9
For reference:		
	RCO ₂ H	5
	⊕ N-H	12
	ROH, H ₂ O	16
	NH_3	36
	_N__	40
	CH ₃ CH ₃	60
	C113C113	00

Acidity Practice

Which base is needed to effect the following conversion?

Answers

 OR^- ? NH_2^- ?

yes

Recall:

"An acid will react with the conj. base of a weaker acid"

or more simply

"Weaker acids and bases are formed"

α Halogenation of A/K's

A.) Acidic

"keto" \rightarrow enol \rightarrow substituted "keto" Ex.

chem263, fa2009

po 21-11

B.) Basic

chem263, fa2009

po 21-12

C.) Haloform Rxn

Initially as under B.); then

chem263, fa2009 po 21-13

haloform ..

Applications:

- 1.) Prep. of acids from methylketones
- 2.) Analytical test for methyl ketones (traditional): "iodoform test":

:. If yellow precipitate is observed, test indicates presence of methylketone