pe 21-3

Carbonyl Alpha Chem. I

- Keto/ Enol Tautomerism
- α H Acidity

Halogenation Rxns

Ref 17: 1 - 3

Prob 17: 1-5; 37 - 39 (8th ed.)

17: 1 – 5; 36 - 38 (9th ed.)

Adv Rdg 17: 7C; 19: 3 - 6

α Hydrogens

Practice: # of α H's

chem263, fa2009

Tautomers

- Def: Isomers where location of α H as changed (normally, an acidic H)
 - otherwise no change in connectivity (but single/double bond change may occur)
 - generally, rapid equil. between tautomers

most important: **keto/ enol** tautomerism

applies to any carbonyl cmpd with $\,\alpha\,$ H

chem263, fa2009 pe 21-4

Practice

Practice		
"keto"	"enol"	_
) <u>o</u>		
ОЩН		_
0		

Extent of Enolization

Normally: keto form more stable; e.g.

But enols, if stabilized by conjugation, become more dominant; esp. β-dicarbonyl

Rxn Mech.'s

enolization is catalyzed by a.) acid or b.)base a.) acid

b.) base

chem263, fa2009

chem263, fa2009

pe 21-7

Acidity

~ 100 %

- "keto" cmpds are slightly acidic
- loose α H as H⁺
- b/c enolate (= conj. base of "keto") is resonance stabilized

Generally, less acidic than ROH can get more acidic if keto cmpd has doubly activated α H;

List of Acidity of Carbonyl Cmpds

cmpd structure pKa

amide

ester

ketone

aldehyde

1,3-diester

1,3-ketoester

1,3-diketone

For reference:

pe 21-12

Acidity Practice

Which base is needed to effect the following conversion?

<u>Answers</u>

OR-? NH_2^- ?

Recall:

"An acid will react with the conj. base of a weaker acid"

or more simply

"Weaker acids and bases are formed"

α Halogenation of A/K's

A.) Acidic

"keto" → enol → substituted "keto" Ex.

chem263, fa2009

pe 21-11

chem263, fa2009

C.) Haloform Rxn

Initially as under B.); then

chem263, fa2009 pe 21-13

haloform ..

Applications:

- 1.) Prep. of acids from methylketones
- 2.) Analytical test for methyl ketones (traditional): "iodoform test":

:. If yellow precipitate is observed, test indicates presence of methylketone