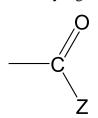
Acid Derivatives I

General/Naming

Reactivity

Ref 18: 2E - 2I, 4


Prob 18: 5, 20

Adv Rdg 18: 5 – 8

General

- have modified -CO₂H group
- retain "acyl" group

chem263, fa2009

where Z is e/n group

halides, esp., chloride

OR, esters

 NR_1R_2 , amides (R's can be H)

chem263, fa2009

General ...

All produce RCO₂H when treated w/ H₂O; but different conditions are required

chem263, fa2009

po 19-3

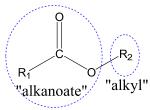
Naming

Halides

-ic acid ── -yl halide

Anhydrides

-ic acid ── -ic anhydride


po 19-4

po 19-5

po 19-8

Naming ...

Esters

"as if it were a salt"

Examples

Naming ...

Amides

-(o)ic acid ─ -amide

"substitution at N indicated by prefix N"

Nitriles

-(o)ic acid
$$\longrightarrow$$
 -onitrile $CH_3C\equiv N$ acetonitrile

chem263, fa2009

General Reactivity

most characteristic rxn:

"nucleophilic acyl substitution"

subject to acid/base catalysis (similar to A/K rxns)

rxn is favored if

Z is better L.G. than Y, i.e.,

- Z⁻ is weaker base than Y⁻
- HZ is stronger acid than HY
- e.g., Cl⁻ is good L.G. (weak base; HCl strong acid), and, therefore, acyl chlorides react easily

chem263, fa2009

Mechanism

Superficially

looks like direct substitution

Actually

- 2 steps involved:
 - i.) nucleophilic attack/ addⁿ
 - ii.) expulsion/ elimination

Generally, reversible equilib. rxn;

reverse (green) direction favored, if Z strong nucleophile

po 19-9

Ranking of Reactivity

General Principle:

1st step is nucleophilic addⁿ, slow, rate limiting step

∴ if δ + on carbonyl C ↑ nucleophile will be attracted more = reactivity ↑

if Z = (strong) EWG,
C becomes more pos. and reactivity ↑;

and v.v.:

if Z has e⁻ donating feature (is EDG), carbonyl C becomes less pos. & reactivity ↓

Ranking Specifics

1.) Acyl Halides (esp., chlorides)

- Cl withdraws e density by induction
- little e⁻ donation by conjugation
- ∴highly reactive!

chem263, fa2009

po 19-11

3.) Esters

chem263, fa2009

po 19-12

3.) Anhydrides

- A) e⁻ withdrawal by induction same as in ester
- B.) e donation effect reduced b/c 2 carbonyl C's; "split in ½"
 - ∴ δ^+ on C=O is larger than in esters

∴anhydrides more reactive than esters

tetrahedral O withdraws by induction donates by conjugation

∴less reactive than halides

(less reactive than anhydrides, see next page)

4.) Amides

in comparison with esters

less e withdrawal by induction since N is less e/n than O

e donation by conjugation similar

∴reduced reactivity,

least reactive of all acid derivatives we studied

Summary

halides

anhydrides

esters

amides, nitriles

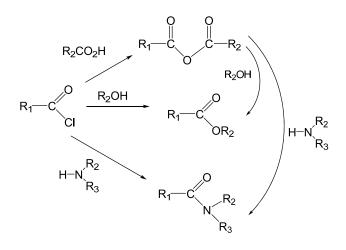
Illustration: Rxn w/ H₂O

anhydrides:

halides react at r.t., no cat. needed

react at r.t., if cat. present

esters: need cat. & $T \uparrow$ amides, nitriles need cat., $T \uparrow$, $t \uparrow$


chem263, fa2009 po 19-15

General Prep. Methods

$$R-C \xrightarrow{O} \xrightarrow{SOCl_2} R-C \xrightarrow{O}$$

"make acyl chloride,

then all other acid deriv^s can be made from there."

