po 17-4

Carboxylic Acids I

General

Naming

Acid/ Base Properties

Ref 18: 1 - 2I

Prob 18: 1, 2 (19, 20 some)

Adv Rdg 18: 2J - 4

General

$$-CO_2H$$

$$\begin{array}{c} \vdots \\ \delta^- \\ \delta^- \\ sp^2C \end{array}$$

B.L. acid
$$\xrightarrow{-H^+}$$
 \bigcirc . \bigcirc .

B.L. base
$$\xrightarrow{+H^+}$$
 $\overset{\circ}{\longrightarrow}$ $\xrightarrow{\oplus}$

Lewis acid: $\pi^* \text{ MO of C=O}$ is electrophilic

Lewis base: OH lone pairs on C=O are nucleophilic

chem263, fa2009 po 17-3

Acid Derivatives

-OH replaced by other e/n atoms (groups); most important

—c≡_N nitrile (cyanide)

chem263, fa2009

Occurrence

• occur widely; "stable", known for long time

• many common names exist

formic acid

acetic

lactic

oxalic O O

malonic

succinic HO O

benzoic

 α -aminoacids

R variable; building blocks of proteins, such as muscle, enzymes, some hormones, antibodies, ...

Fats

(for see details, see Solomons 23.2)

- "fatty acid" = long, unbranched acid; most common: C_{16} , C_{18}
- are parts of fats ; i.e. multi-ester of glycerol "triglyceride"

Illustration:

$$\begin{array}{c} O \\ CH_2-O-C-(CH_2)_nCH_3 \\ \\ O \\ CH-O-C-(CH_2)_nCH_3 \\ \\ \\ O \\ CH_2-O-C-(CH_2)_nCH_3 \end{array}$$

chains may be identical or different

Examples

sat^d fatty acid: stearic acid CH₃-(CH₂)₁₆ -CO₂H

"cis" unsaturated fatty acid: oleic acid

$$H$$
 H CH_3 - $(CH_2)_7$ - $C=C$ - $(CH_2)_7$ - CO_2H

poly unsaturated acid (PUFA), linoleic acid

$$H$$
 H H H CH_3 - CH_2

omega-3 (ω -3) fatty acid, linolenic acid

chem263, fa2009

po 17-7

Systematic Naming

- ending: -oic acid
- "2 acid F.G.'s: -edioic acid
- on rings: -carboxylic acid
- group has highest priority in numbering
- salts: -oate

chem263, fa2009

Practice

po 17-8

H – Bonding

• similar to ROH, but more variety exists

• dimers are prominent, if "neat" (no solvent)

Note:

can H-bond to other molecules, such as ROH, H₂O, A/K's, amines ... Consequences

• b.p. ↑

chem263, fa2009

H-Bonding ...

- soluble in other H-bond forming substances
- "partially" responsible fo 2°, 3° structure ("folding") of large biomoecules; e.g., prioteins, DNA, carbohydrates, ...

chem263, fa2009

po 17-11

Acidity

- weaker than mineral acids (HCl, H₂SO₄, ...)
- much stronger than alcohols etc.
 (see pK_a Tables; esp. HT Data Sheet)
- recall: small $pK_a = strong$ acid

Illustration:

• $CH_3CO_2H \approx 1\%$ ionized

• $CH_3CH_2OH \approx 1 \times 10^{-5} \%$ ionized

chem263, fa2009

Explanation

 conj. base resonance stabilized, therefore more easily formed, and acid stronger

$$\begin{bmatrix} -\mathring{\circ} & & & & \\ \mathring{\circ} & & & & \\ -\mathring{\circ} & & & & \\ \end{bmatrix}$$

or

2.) inductive effect of carbonyl group

- pos. C polarizes O–H bond further;
- "H⁺" lost more easily

po 17-12

Effect of Substituents on α , β , C's

Polarity of O–H bond influenced by inductive effect

EWG's acidity ↑

EDG's acidity ↓

Illustration:

- the closer the EWG, the more acidic the acid
- more EWG's present, more acidity
- important EWG's: -NO₂, -X (-F), -OH
- EDG's (mainly alkyl groups) decrease acidity, explanation somewhat controversial

Practice

compare acidity of the following w/ that of CH_3CO_2H

stronger

$$H_3C - C - CO_2H$$
 NO_2

stronger

weaker

stronger

chem263, fa2009

po 17-15

Basicity

expressed w/ strong acids (HCl, ...)

- H⁺ preferentially attaches to C=O oxygen, since resulting cation is resonance stabilized
- mech. involved in many acid catalyzed rxns, (see later)