Carboxylic Acids I General Naming Acid/ Base Properties Ref 18: 1 - 2I Prob 18: 1, 2 (19, 20 some) Adv Rdg 18: 2J - 4 General $$-CO_2H$$ $$\begin{array}{c} \vdots \\ \delta^- \\ \delta^- \\ sp^2C \end{array}$$ B.L. acid $$\xrightarrow{-H^+}$$ \bigcirc \bigcirc B.L. base $$\xrightarrow{+H^+}$$ $\overset{\circ}{\longrightarrow}$ $\xrightarrow{\oplus}$ Lewis acid: - 0 π^* MO of C=O is electrophilic Lewis base: OH lone pairs on C=O are nucleophilic chem263, fa2009 po 17-3 #### **Acid Derivatives** -OH replaced by other e/n atoms (groups); most important —c≡n chem263, fa2009 Occurrence • occur widely; "stable", known for long time • many common names exist α -aminoacids R variable; building blocks of proteins, such as muscle, enzymes, some hormones, antibodies, .. po 17-4 po 17-5 po 17-8 #### **Fats** (for see details, see Solomons 23.2) - "fatty acid" = long, unbranched acid; most common: C₁₆, C₁₈ - are parts of fats ; i.e. multi-ester of glycerol "triglyceride" Illustration: $$\begin{array}{c} O \\ | \\ | \\ CH_2-O-C-(CH_2)_nCH_3 \\ | \\ O \\ CH-O-C-(CH_2)_nCH_3 \\ | \\ O \\ CH_2-O-C-(CH_2)_nCH_3 \end{array}$$ chains may be identical or different #### Examples sat^d fatty acid: stearic acid "cis" unsaturated fatty acid: oleic acid poly unsaturated acid (PUFA), linoleic acid omega-3 (ω-3) fatty acid, linolenic acid chem263, fa2009 po 17-7 #### Systematic Naming - ending: -oic acid - "2 acid F.G.'s: -edioic acid - on rings: -carboxylic acid - group has highest priority in numbering - salts: -oate chem263, fa2009 #### **Practice** $$HO_2C$$ CO_2H H-Bonding ... ## H – Bonding • similar to ROH, but more variety exists • dimers are prominent, if "neat" (no solvent) Note: can H-bond to other molecules, such as ROH, H₂O, A/K's, amines ... #### Consequences - b.p. ↑ - soluble in other H-bond forming substances - "partially" responsible fo 2°, 3° structure ("folding") of large biomoecules; e.g., prioteins, DNA, carbohydrates, ... chem263, fa2009 po 17-11 ## Acidity - weaker than mineral acids (HCl, H₂SO₄, ...) - much stronger than alcohols etc. (see pK_a Tables; esp. HT Data Sheet) - recall: small $pK_a = strong$ acid Illustration: - CH_3CO_2H $\approx 1\%$ ionized - $CH_3CH_2OH \approx 1 \times 10^{-5} \%$ ionized chem263, fa2009 po 17-12 ## Explanation 1.) conj. base resonance stabilized, therefore more easily formed, and acid stronger - 2.) inductive effect of carbonyl group - pos. C polarizes O–H bond further; - "H" lost more easily # Effect of Substituents on α , β , C's Polarity of O–H bond influenced by inductive effect EWG's acidity ↑ EDG's acidity ↓ Illustration: - the closer the EWG, the more acidic the acid - more EWG's present, more acidity - important EWG's: -NO₂, -X (-F), -OH - EDG's (mainly alkyl groups) decrease acidity, explanation somewhat controversial #### **Practice** compare acidity of the following w/ that of CH_3CO_2H chem263, fa2009 po 17-15 #### **Basicity** expressed w/ strong acids (HCl, ...) - H⁺ preferentially attaches to C=O oxygen, since resulting cation is resonance stabilized - mech. involved in many acid catalyzed rxns, (see later)