A/K III # (Hemi-) Acetal Formation - Rxn w/ ROH - Carbohydrate Chemistry Ref 16: 7; (Ch.22) Prob 16: 9 – 11; HMWK #06 Adv Rdg 16: 8 - 9; (12: 3 - 8) Terminology **Hydrate** chem263, fa2009 Hemiacetals Acetals "open" general aldehyde derived "internal" general aldehyde derived chem263, fa2009 pe 15-3 General Rxn chem263, fa2009 pe 15-4 pe 15-2 ### Rxn Mech.'s 1.) Hemiacetal Formⁿ a.) base catalyzed Notes: 1.) R_1 , R_2 could be Η open chains rings 2.) R₃, R₄ could be open chains rings $3.) R_1, R_4$ could be rings R_2 , R_3 - 4.) all are equilibrium rxns - 5.) rxn slow in neutral medium; can be catalyzed by "acid" or "base" b.) acid catalyzed pe 15-5 chem263, fa2009 pe 15-6 Mech.'s ... 2.) Acetal Formⁿ in acid (not in base) rxn can go further chem263, fa2009 pe 15-7 ### Summary Hemiacetals formed in acid or base (slowly in neutal medium) rxn reversible in acid or base Acetal formed only in acid reversible in acid irreversible (stable) in base Equilibria can be "shifted" acc. to Le Chatelier's Principle: add extra ROH and remove $H_2O \rightarrow acetal$ add extra H₂O: aldehyde/ketone are favored (in equil. with hydrate) A/K + ROH $$H_2^+$$ acetal; remove H_2O acetal + HOH $$\stackrel{\text{H}^+}{\longrightarrow}$$ A/K chem263, fa2009 Relevance of "Acetals" pe 15-8 - 1.) describes general reactivity of A/K's - important structural element in carbohydrates/ other natural products - 2.) can function as **protecting group** in synthetic schemes General: $A/K \rightarrow$ acetal, prepared in acid - → do rxn elsewhere on molecule, in base - \rightarrow regenerate modified A/K Ex. ## Internal (Cyclic) Hemiacetals Ex. Do detailed mech. as HMWK. pe ### Intro. to Carbohydrate Chem. (see Solomons Ch. 22 for more details) e.g.,: sugar, starch, glycogen, cellulose ... MF: $\approx C_n(H_2O)_n$ Ex. #### **D-Glucose** open form internal hemiacetal chem263, fa2009 pe 15-10 #### **Internal Acetals** - can be formed in presence of ROH/H⁺ - hemiacetal \rightarrow acetal - mech. as before Outline of an Ex. Again, detailed steps as HMWK. chem263, fa2009 pe 15-12 ## Large Carbohydrates e.g.,: sugar, starch, glycogen, cellulose ... are "poly" acetals concepts about basic structure of carbohydrates: in truth: there are 5-and 6- membered rings most carbons carry substituents: OH, CH₂OH stereochem. is important (ignored here)