chem263, fa2009	po 14-1	chem263, fa2009	po 14-2
A/K II		General	
Nucleophilic Addition Rxns			
• General			
• Hydration			
Ref16: 6Probrewrite mech.'sAdv Rdg16: 7		3-D Picture N.B. Nu comes in from attacking the emp at a 45° angle to either from top of	m "left", pty π* the sp ² plane or bottom
chem263, fa2009	po 14-3	chem263, fa2009	po 14-4
General Reactivity (kinetics) increases if (electrostatic attraction increased) (approach by Nu easier b/c less "steric hindrance")		 More Comments on Reactivity (kind 1.) Aldehydes more reactive than 1. a.) "H" smaller than "alkyl" (Nu approach is easier) b.) "alkyls" mildly e⁻ donating, (due to hyperconjugation) reduces δ⁺ on C=0	ketones.

po 14-7

reactivity ...

chem263, fa2009

Rationalization:

(esp. F, Cl on α C)

e.g.,
$$\mathbf{F} = \mathbf{C} = \mathbf{C} \begin{bmatrix} \mathbf{O} \\ \mathbf{A}^+ \end{bmatrix}$$
 increases reactivity

increases δ^+ on $C = \overset{\delta^+}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}}{\overset{}}{\overset{}}}{\overset{}}$

: more reactive towards Nu:

Reactivity (Thermodynamic)

More or less parallels Kinetic Reactivity;

(i.e., if a carbonyl cmpd. reacts fast,

1.) Small R groups favor addⁿ products,

since the tetrahedral arrangement

of the adduct causes crowding.

2.) The dipole nature of a C=O bond is strongly affected by EWG's, EDG's

EWG's strongly increase the polarity

facilitate formⁿ of the tetrahedral addⁿ product.

de-stabilize the molecule and

and resonance effects.

In particular,

of the C=O bond,

its product will be more stable)

Mech.

Equilibrium mostly on left except when : R_1 , R_2 small (e.g. = H), or R_1 , R_2 have inductive EWG's

chem263, fa2009	po 14-9	chem263, fa2009	po 14-10
Examples		Acid/Base Catalysts	
when dissolved in H ₂ O		• In neutral medium (pH \approx 7)	
		rxn (=establishmt of equil.)	
H_C=O		is slow	
H		• rxn rate can be increased in	
H ₃ C H ₃ C		 base (high pH), b/c stronger nuleophile acid (low pH), b/c substrate is activated 	
chem263, fa2009	po 14-11	chem263, fa2009	ро 14-12
Base Catalysis		Acid Catalysis	
		N.B.	
• OH ⁻ is stronger Nu: tha	ın H ₂ O	N.B. H ⁺ (or H ₃ O ⁺) increases pos. charge on carbor	yl C;
• OH ⁻ is stronger Nu: tha	ın H ₂ O	N.B. H ⁺ (or H ₃ O ⁺) increases pos. charge on carbor causing greater attraction;	yl C;
• OH ⁻ is stronger Nu: tha • attacks faster	ın H ₂ O	N.B. H ⁺ (or H ₃ O ⁺) increases pos. charge on carbor causing greater attraction; increasing rate!	yl C;