Ethers

General

Naming

Preparation

Cleavage Reactions

Ref 11:1, 10 – 14

Prob HMWK #05

Adv Rdg 16: 1 - 4

General

- cannot act as acid
- can act as base (both Lewis & B.-L.), very similar to ROH

 $pK_a = \sim -4$ (similar to ROH_2^+);

e.g.

"oxonium ion"

chem263 fa2009 pe 1

Occurrence, Common Names

commonly used as solvent for rxns, such as

chem263 fa2009

pe 12b-4

Systematic Naming

1.)" alkoxyalkane method" smaller R larger R

Examples

2.) "alkyl alkyl ether method"; used commonly; e.g.,

Prep

1.) ROH + mineral acid
2.) alkene + peracid
→ epoxide

3.) Williamson synthesis

typical $S_N 2$ rxn:

halide/tosylate $(1^{\circ}/2^{\circ})$ + alkoxide \rightarrow ether (substrate) (nucleophile)

Note : Ideally, the substrate should be 1°

chem263 fa2009
Example:

chem263 fa2009 pe 12b-

Internal Williamson Rxn

produces cyclic ethers; general scheme chem263 fa2009

pe 12b-8

Rxns

generally relate to C-O bond breakage

1.) Trtmt w/ strong base

normally no S/E rxn b/c ¯OR poor L.G.

except for epoxides;

which have extra angle strain,

base attacks at less substituted C (better access),

S_N2 style; i.e., inversion of configuration

(see HMWK #05 for practice)

2.) Acidic Cleavage

w/ strong acid, such as $HCl_{(aq)},\,HBr_{(aq)}$ works b/c oxonium ion is formed which is a good L.G.

Where does C - O - C split?

3 different cases:

- a.) "tertiary C" present
- b.) only "primary & secondary C's" present
- c.) epoxides

a.) if 3° / allylic C / benzylic C present, cleaves at that site by $S_{N}1/E1$ e.g.,

pe 12b-10

chem263 fa2009

b.) if only 1°/2° C present, ${\it cleaves~by~S_{N}2~at~less~substituted~site} \ \, e.g., \label{eq:substituted}$

chem263 fa2009 pe 12b-11

- c.) in acidic cleavage of **epoxides**get both regio- & stereocontrol:
 - cleaves at more substituted site &
 - forms trans product