recall:

Addⁿ of H–X

Conjugated Systems II

Rxns

HX Addition

Diels Alder Rxn

Ref 13: 10, 11 (both ed^{ns})

Prob 13: 10 - 15, 23 - 27, 33, 42 (both ed^{ns})

Adv Rdg 14: 1-4 (both ed^{ns})

goes in 2 steps x^{Θ}

electrophilic rxns for isolated -enes,

For conjugated dienes; e.g. 1,3-butadiene, in the 1st step only the 2° allylic cation forms b/c it is resonance stabilized

chem263, fa2009

po 7-3

Allylic Cation

• explained by resonance

chem263, fa2009

Allylic Cation

• expained by MO Theory

po 7-4

chem263, fa2009

po 7-8

Comments on Allylic Cation

 π_2 is empty MO mostly located at end C's e^- 's from X^- go there explains attack of X^- at outer C's

Overall Result

chem263, fa2009 po 7

Kinetic vs. Thermodynamic Control

Rxn Profile

chem263, fa2009

kin./thermodyn. control

At **low** temp.

- ullet only E_{a1} is available from kinetic motion
- can reach only TS₁
- only P₁ is formed
- .. kinetic control gives "kinetic product"

chem263, fa2009

kin./thermodyn. control

po 7-9

chem263, fa2009 po 7-10

Note

At **high** temp.

- sufficient energy (E_{a2}) is available
- to reach TS₂
- P₁ and P2 can be formed
- also can go back from P₁ to R
- ultimately, P₂ is dominant b/c it has lower energy (the system "equilibrates", see Chem 102)
- system reaches equilibrium
- •• product with lower energy is the major one
- thermodynamic control gives "thermodynamic product"

• could also start with P₁,

• under the same rxn conditions P₁ will equilibrate with P2 via R, see rxn profile

chem263, fa2009

po 7-11 **Application**

(HX addⁿ to conjugated dienes)

1,2 - adduct

1,4 - adduct

kinetic control

thermodynamic control

reason: proximity effect, less Ea required

more stable b/c di-substituted double bond chem263, fa2009

po 7-12

Diels-Alder Rxn (D-A)

conj. diene + D-A product - ene (dienophile)

Simplest Ex.

Remarkable:

• 2 new C-C bonds

• 1 π bond

• 6-membered ring

all formed in 1 step

1.) Diene (conjugated)

must be able to assume

s - cis conformation

(s means "cis at single bond")

s - cis preformed; reacts well!

s - trans fixed; cannot be diene in D-A

po 7-15

chem263, fa2009 requirements ...

2.) Dienophile

- most –enes / -ynes are feasible
- if diene has only (or no) alkyl substituents then –enes w/ conjugated
 - e withdrawing groups (EWG's) react faster

Illustration:

good dienophiles:

chem263, fa2009

Stereochemistry

1.) cis / trans configuration of dienophile is retained in rxn.

Ex.

2.) endo/exo preference

important for bicyclic dienes:

"the π system of the EWG (s) of the dienophile interact w/ the π system of the diene"

therefore EWG's remain in close proximity of the diene system

this is the "endo" configuration;

the opposite is the "exo" configuration.

chem263, fa2009

description of endo/exo:

R's occupying

endo

positions

exo

Example Reaction:

po 7-16

po 7-14