pe 7-3 ## Addⁿ of H-X recall: electrophilic rxns for isolated –enes, goes in 2 steps # Conjugated Systems II **Rxns** **HX** Addition Diels Alder Rxn Ref 13: 10, 11 (both ed^{ns}) Prob 13: 10 - 15, 23 - 27, 33, 42 (both ed^{ns}) Adv Rdg 14: 1-4 (both ed^{ns}) For conjugated dienes; e.g. 1,3-butadiene, in the 1st step only the 2° allylic cation forms b/c it is resonance stabilized chem263, fa2009 # Allylic Cation • explained by resonance chem263, fa2009 ## Allylic Cation • expained by MO Theory pe 7-4 chem263, fa2009 pe 7-9 kin./thermodyn. control At **high** temp. - sufficient energy (E_{a2}) is available - to reach TS₂ - P₁ and P2 can be formed - also can go back from P₁ to R - ultimately, P₂ is dominant b/c it has lower energy (the system "equilibrates", see Chem 102) - system reaches equilibrium - .. product with lower energy is the major one - thermodynamic control gives "thermodynamic product" chem263, fa2009 pe 7-10 Note - could also start with P₁, - under the same rxn conditions P_1 will equilibrate with P2 via R, see rxn profile chem263, fa2009 pe 7-11 ## **Application** (HX addⁿ to conjugated dienes) chem263, fa2009 ne 7-12 ## Diels-Alder Rxn (D-A) conj. diene + - ene \rightarrow D-A product (dienophile) Simplest Ex. Remarkable: - 2 new C-C bonds - 1 π bond all formed in 1 step • 6-membered ring ### Requirements for D-A Rxn 1.) Diene (conjugated) must be able to assume s – cis conformation (s means "cis at single bond") requirements ... chem263, fa2009 - 2.) Dienophile - most –enes / -ynes are feasible - if diene has only (or no) alkyl substituents then –enes w/ conjugated - e withdrawing groups (EWG's) react faster Illustration: chem263, fa2009 pe 7-15 ### Stereochemistry 1.) cis / trans configuration of dienophile is retained in rxn. Ex. 2.) endo/exo preference important for bicyclic dienes: "the π system of the EWG (s) of the dienophile interact w/ the π system of the diene" therefore EWG's remain in close proximity of the diene system this is the "endo" configuration; the opposite is the "exo" configuration. chem263, fa2009 pe 7-16 description of endo/exo: **Example Reaction:**