pe 7-3

Addⁿ of H-X

recall:

electrophilic rxns for isolated –enes, goes in 2 steps

Conjugated Systems II

Rxns

HX Addition

Diels Alder Rxn

Ref 13: 10, 11 (both ed^{ns})

Prob 13: 10 - 15, 23 - 27, 33, 42 (both ed^{ns})

Adv Rdg 14: 1-4 (both ed^{ns})

For conjugated dienes; e.g. 1,3-butadiene, in the 1st step only the 2° allylic cation forms b/c it is resonance stabilized

chem263, fa2009

Allylic Cation

• explained by resonance

chem263, fa2009

Allylic Cation

• expained by MO Theory

pe 7-4

chem263, fa2009 pe 7-9

kin./thermodyn. control

At **high** temp.

- sufficient energy (E_{a2}) is available
- to reach TS₂
- P₁ and P2 can be formed
- also can go back from P₁ to R
- ultimately, P₂ is dominant
 b/c it has lower energy
 (the system "equilibrates", see Chem 102)
- system reaches equilibrium
- .. product with lower energy is the major one
- thermodynamic control gives "thermodynamic product"

chem263, fa2009 pe 7-10

Note

- could also start with P₁,
- under the same rxn conditions P_1 will equilibrate with P2 via R, see rxn profile

chem263, fa2009 pe 7-11

Application

(HX addⁿ to conjugated dienes)

chem263, fa2009

ne 7-12

Diels-Alder Rxn (D-A)

conj. diene + - ene \rightarrow D-A product (dienophile)

Simplest Ex.

Remarkable:

- 2 new C-C bonds
- 1 π bond

all formed in 1 step

• 6-membered ring

Requirements for D-A Rxn

1.) Diene (conjugated)

must be able to assume

s – cis conformation

(s means "cis at single bond")

requirements ...

chem263, fa2009

- 2.) Dienophile
 - most –enes / -ynes are feasible
 - if diene has only (or no) alkyl substituents then –enes w/ conjugated
 - e withdrawing groups (EWG's) react faster

Illustration:

chem263, fa2009

pe 7-15

Stereochemistry

1.) cis / trans configuration of dienophile is retained in rxn.

Ex.

2.) endo/exo preference

important for bicyclic dienes:

"the π system of the EWG (s) of the dienophile interact w/ the π system of the diene" therefore EWG's remain in close proximity of the diene system this is the "endo" configuration; the opposite is the "exo" configuration.

chem263, fa2009

pe 7-16

description of endo/exo:

Example Reaction: