Local Magnetic Field, B_{local}

NMR II

Chemical Shift

Ref 9: 5, 6; 8th ed.

9: 6, 7; 9th ed.

Prob HMWK #2

Adv Rdg 9: 7 (8th) / 9: 8 (9th)

External Field B₀

• interacts with e's of molecule, incl. valence e's

• induces opposing

small local magnetic field, B_{local}

(making B_{eff} smaller)

 $B_{local} = \sigma B_0$

where σ is "shielding const."

high e density causes:

- large σ
- shielded nucleus
- lge B_{local}
- \bullet B_{eff} "greatly" reduced
- ∴ "high e density" = "reduced mag. field"

chem263, fa2009

po 2-3

Shielding Constant, σ

- depends principally on local e⁻ density
 (+ other factors)
- if neighboring atoms are e/n

then, e-density at H is low,

= "deshielded"

 $= \sigma$, small

• and v.v

if neighboring atoms are not e/n

then, e-density at H is high,

= "shielded"

 $= \sigma$, large

chem263, fa2009

po 2-4

Effective Mag. Field Strength, B_{eff}

B_{eff} = "B, actually felt by nucleus"

$$= B_0 - B_{local}$$

$$= B_0 - \sigma B_0$$

$$= B_0 (1 - \sigma)$$

Effect on Resonance Frequency,

 ν_{res}

must use B_{eff} (not B_0)

$$\nu_{res} = \gamma \; \frac{1}{2\pi} \; B_{eff}$$

$$= \gamma \; \frac{1}{2\pi} \; B_0 \left(\; 1 - \sigma \; \right)$$

 \therefore σ , large $\longrightarrow \nu_{res}$, low

shielding
$$\longrightarrow low \ \nu_{res}$$
 high e^- density

Practice

neighbor atoms	are e/n (e.g., Cl)	are less e/n (e.g., Si)		
e density at H atom	low	high		
shielding, σ	low, "deshielded"	high, "shielded"		
B _{local}	low ↓	high ↑		
$B_{ m eff}$	high ↑	low ↓		
$v_{ m res}$	high ↑	low ↓		

chem263, fa2009

Example

1.) TMS, tetramethylsilane, Si(CH₃)₄

- Si is "electropositive",
- increases e density at H,
- H becomes "e rich" = "shielded"
- 2.) bromoform, CHBr₃

- Br is "electronegative",
- decreases e density at H,
- H becomes "e poor" = "deshielded"

chem263, fa2009 shielding effects ...

po 2-7

po 2-8

variable	TMS	CHBr ₃	
e ⁻ density	high	small	
nucleus	shielded	deshielded	
σ (shielding const)	lge	small	
B _{local}	lge	small	
$ m B_{eff}$	small (reduced)	large (increased)	
ΔΕ	small	lge	
$v_{ m res}$	small	lge	
resonance occurs	"downfrequency"	"upfrequency"	
traditional term	"upfield"	"downfield"	
peak occurs on	right side	left side	

chem263, fa2009 po 2-9

Quantitative Example

B_0	2.35 T		7.05 T		11.75 T	
ν	100 MHz		300 MHz		500 MHz	
cmpd	TMS	CHBr ₃	TMS	CHBr ₃	TMS	CHBr ₃
B _{eff} (T)	2.350 000 00	2.350 015 84	7.050 0000 00	7.050 047 52	11.750 000 00	11.750 079 20
ν_{res} (Hz)	100 000 000	100 000 674	300 000 000	300 002 022	500 000 000	500 003 370
Δν (Ηz)		674		2 022		3 370
δ (ppm)		6.74		6.74		6.74

 Δv , absolute shift; δ , relative ("chemical") shift

chem263, fa2009

po 2-10 chem263, fa2009
Explanatory Notes ...

Explanatory Notes

A.) at 100 MHz

- 1.) "v", nominal operating frequency, as required for PMR
- 2.) B₀ associated mag. field strength, from

$$v = \gamma \frac{B_0}{2\pi}$$
 (use γ for ¹H)

3.) TMS used for calibration,

$$v_{res}$$
 set at 100 000 000 Hz (= v_{ref})

$$(:. B_{eff} = 2.350\ 000\ 00\ T)$$

- 4.) v_{res} for CHBr₃, (X), experimentally observed
- 5.) $\Delta v = v_X v_{ref} = 674 \text{ Hz}$

6.)
$$\delta = \frac{\Delta v}{v_{\text{ref}}} \times 10^6 = 6.74 \text{ ppm}$$

B.) at 300 MHz

1.)
$$B_o \propto v$$

2.)
$$B_{eff} = B_o(1 - \sigma)$$

 $\propto B_o$

 \therefore B_o triples \rightarrow B_{eff} triples

3.) similarly,
$$v_{res} \propto B_o$$
 also triple; convince yourself

po 2-11

4.) at 100 MHz:
$$\delta = \frac{\Delta v}{v_{\text{ref}}} \times 10^6$$

at 300 MHz:
$$\delta = \frac{3 \Delta v}{3 v_{ref}} \times 10^6$$

 \therefore δ value does **not** change w/ instrument

C.) at 500 MHz? Do as HMWK!