Local Magnetic Field, B_{local} ## NMR II ### **Chemical Shift** Ref 9: 5, 6; 8th ed. 9: 6, 7; 9th ed. Prob HMWK #2 Adv Rdg 9: 7 (8th) / 9: 8 (9th) External Field B₀ • interacts with e's of molecule, incl. valence e's • induces opposing small local magnetic field, B_{local} (making B_{eff} smaller) $B_{local} = \sigma B_0$ where σ is "shielding const." high e density causes: - large σ - shielded nucleus - lge B_{local} - \bullet B_{eff} "greatly" reduced - ∴ "high e density" = "reduced mag. field" chem263, fa2009 po 2-3 ## Shielding Constant, σ - depends principally on local e⁻ density (+ other factors) - if neighboring atoms are e/n then, e-density at H is low, = "deshielded" $= \sigma$, small • and v.v if neighboring atoms are not e/n then, e-density at H is high, = "shielded" $= \sigma$, large chem263, fa2009 po 2-4 Effective Mag. Field Strength, B_{eff} B_{eff} = "B, actually felt by nucleus" $$= B_0 - B_{local}$$ $$= B_0 - \sigma B_0$$ $$= B_0 (1 - \sigma)$$ ## Effect on Resonance Frequency, ν_{res} must use B_{eff} (not B_0) $$\nu_{res} = \gamma \; \frac{1}{2\pi} \; B_{eff}$$ $$= \gamma \; \frac{1}{2\pi} \; B_0 \left(\; 1 - \sigma \; \right)$$ \therefore σ , large $\longrightarrow \nu_{res}$, low shielding $$\longrightarrow low \ \nu_{res}$$ high e^- density ## Practice | neighbor
atoms | are e/n (e.g., Cl) | are less e/n (e.g., Si) | | | |------------------------|--------------------|-------------------------|--|--| | e density
at H atom | low | high | | | | shielding, σ | low, "deshielded" | high, "shielded" | | | | B _{local} | low ↓ | high ↑ | | | | $B_{ m eff}$ | high ↑ | low ↓ | | | | $v_{ m res}$ | high ↑ | low ↓ | | | chem263, fa2009 Example 1.) TMS, tetramethylsilane, Si(CH₃)₄ - Si is "electropositive", - increases e density at H, - H becomes "e rich" = "shielded" - 2.) bromoform, CHBr₃ - Br is "electronegative", - decreases e density at H, - H becomes "e poor" = "deshielded" chem263, fa2009 shielding effects ... po 2-7 po 2-8 | variable | TMS | CHBr ₃ | | |------------------------|-----------------|-------------------|--| | e ⁻ density | high | small | | | nucleus | shielded | deshielded | | | σ (shielding const) | lge | small | | | B _{local} | lge | small | | | $ m B_{eff}$ | small (reduced) | large (increased) | | | ΔΕ | small | lge | | | $v_{ m res}$ | small | lge | | | resonance occurs | "downfrequency" | "upfrequency" | | | traditional term | "upfield" | "downfield" | | | peak occurs on | right side | left side | | chem263, fa2009 po 2-9 # Quantitative Example | B_0 | 2.35 T | | 7.05 T | | 11.75 T | | |----------------------|--------------|-------------------|---------------|-------------------|---------------|-------------------| | ν | 100 MHz | | 300 MHz | | 500 MHz | | | cmpd | TMS | CHBr ₃ | TMS | CHBr ₃ | TMS | CHBr ₃ | | B _{eff} (T) | 2.350 000 00 | 2.350 015 84 | 7.050 0000 00 | 7.050 047 52 | 11.750 000 00 | 11.750 079 20 | | ν_{res} (Hz) | 100 000 000 | 100 000 674 | 300 000 000 | 300 002 022 | 500 000 000 | 500 003 370 | | Δν (Ηz) | | 674 | | 2 022 | | 3 370 | | δ (ppm) | | 6.74 | | 6.74 | | 6.74 | Δv , absolute shift; δ , relative ("chemical") shift chem263, fa2009 po 2-10 chem263, fa2009 Explanatory Notes ... ### **Explanatory Notes** #### A.) at 100 MHz - 1.) "v", nominal operating frequency, as required for PMR - 2.) B₀ associated mag. field strength, from $$v = \gamma \frac{B_0}{2\pi}$$ (use γ for ¹H) 3.) TMS used for calibration, $$v_{res}$$ set at 100 000 000 Hz (= v_{ref}) $$(:. B_{eff} = 2.350\ 000\ 00\ T)$$ - 4.) v_{res} for CHBr₃, (X), experimentally observed - 5.) $\Delta v = v_X v_{ref} = 674 \text{ Hz}$ 6.) $$\delta = \frac{\Delta v}{v_{\text{ref}}} \times 10^6 = 6.74 \text{ ppm}$$ B.) at 300 MHz 1.) $$B_o \propto v$$ 2.) $$B_{eff} = B_o(1 - \sigma)$$ $\propto B_o$ \therefore B_o triples \rightarrow B_{eff} triples 3.) similarly, $$v_{res} \propto B_o$$ also triple; convince yourself po 2-11 4.) at 100 MHz: $$\delta = \frac{\Delta v}{v_{\text{ref}}} \times 10^6$$ at 300 MHz: $$\delta = \frac{3 \Delta v}{3 v_{ref}} \times 10^6$$ \therefore δ value does **not** change w/ instrument C.) at 500 MHz? Do as HMWK!