Local Magnetic Field, B_{local}

NMR II

Chemical Shift

Ref 9: 5, 6; 8th ed.

9: 6, 7; 9th ed.

Prob HMWK #2

Adv Rdg 9: 7 (8th) / 9: 8 (9th)

External Field B₀

• interacts with e's of molecule, incl. valence e's

• induces **opposing** small local magnetic field, B_{local}

(making B_{eff} smaller)

 $B_{local} = \sigma B_0$

where σ is "shielding const."

high e density causes:

chem263, fa2009

po 2-3

Shielding Constant, σ

- depends principally on local e⁻ density
 (+ other factors)
- if neighboring atoms are e/n then,
- and v.v
 if neighboring atoms are not e/n
 then,

chem263, fa2009

po 2-4

Effective Mag. Field Strength, Beff

 $B_{eff} =$ "B, actually felt by nucleus"

Effect on Resonance Frequency,

 ν_{res}

must use B_{eff} $(not B_0)$

$$v_{res} =$$

Practice

chem263, fa2009

neighbor atoms	are e/n (e.g., Cl)	are less e/n (e.g., Si)
e ⁻ density at H atom		
shielding, σ		
B _{local}		
B _{eff}		
$v_{ m res}$		

chem263, fa2009

Example

1.) TMS, tetramethylsilane, Si(CH₃)₄

- Si is "electropositive",
- increases e density at H,
- H becomes "e rich" = "shielded"
- 2.) bromoform, CHBr₃
- Br is "electronegative",
- decreases e density at H,
- H becomes "e poor" = "deshielded"

chem263, fa2009 shielding effects ...

po 2-7

po 2-8

variable	TMS	CHBr ₃
e ⁻ density		
nucleus		
σ (shielding const)		
B _{local}		
B _{eff}		
ΔΕ		
$ u_{\rm res} $		
resonance occurs		
traditional term		
peak occurs on		

chem263, fa2009 pe 2-9

Quantitative Example

\mathbf{B}_0						
ν	100 MHz		300 MHz		500 MHz	
cmpd	TMS	CHBr ₃	TMS	CHBr ₃	TMS	CHBr ₃
B _{eff} (T)						
$\nu_{\rm res} ({ m Hz})$						
Δν (Ηz)						
δ (ppm)						

 Δv , absolute shift; δ , relative ("chemical") shift

pe 2-10

Explanatory Notes

A.) at 100 MHz

- 1.) "v", nominal operating frequency, as required for PMR
- 2.) B₀, associated mag. field strength, from

$$v = \gamma \frac{B_0}{2\pi}$$
 (use γ for ¹H)

3.) TMS used for calibration,

$$v_{res}$$
 set at 100 000 000 Hz (= v_{ref})

$$(:. B_{eff} = 2.350\ 000\ 00\ T)$$

4.) v_{res} for CHBr₃, (X), experimentally observed

5.)
$$\Delta v = v_X - v_{ref} = 674 \text{ Hz}$$

6.)
$$\delta = \frac{\Delta v}{v_{\text{ref}}} \times 10^6 = 6.74 \text{ ppm}$$

Explanatory Notes ...

B.) at 300 MHz

1.)
$$B_0 \propto v$$

2.)
$$B_{eff} = B_o (1 - \sigma)$$

 $\propto B_o$

$$:$$
 B_o triples \rightarrow B_{eff} triples

3.) similarly,
$$\nu_{res} \propto B_o$$
 also triple;
$$\Delta\nu_o \propto B_o$$
 convince yourself

4.) at 100 MHz:
$$\delta = \frac{\Delta v}{v_{\text{ref}}} \times 10^6$$

at 300 MHz:
$$\delta = \frac{3 \Delta v}{3 v_{ref}} \times 10^6$$

∴ δ value does **not** change w/ instrument

C.) at 500 MHz? Do as HMWK!