

First Name _____

Last Name _____

Student ID _____

Signature _____

Chemistry 161, A1
Midterm Examination - 05 November 2004
© 2004 H. Taube

Instructions

Closed book exam; no calculators.

Physical models permitted.

Only answers on the front side of each page will be marked, unless requested otherwise.

Write in pen (to permit potential remarking).

Time allowed: 50 min.

There are **16** questions on **7** pages.

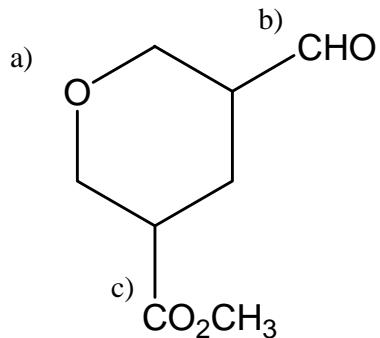
Potentially Useful Data*Mini Periodic Table*

H, He, Li, Be, B, C, N, O, F, ..., Cl, ..., Br, ..., I

Approx. pK _a Values	
“acid”	pK _a
H ₂ SO ₄	-3
H ₃ O ⁺	-2
CH ₃ CO ₂ H	5
NH ₄ ⁺	9
phenol, C ₆ H ₅ OH	10
1,3-dicarbonyl	9 - 13
Methanol, CH ₃ OH	16
H ₂ O	16
Ethanol, CH ₃ CH ₂ OH	16
Acetone, CH ₃ COCH ₃	20
terminal alkyne	25
NH ₃	33

Page #	Maximum	Score				
		1	2	3	4	5
1	11					
2	11					
3	11					
4	11					
5	7					
6	9					
7	10					
Total	70					

/2 01. Show the electron configuration for the O atom, incl. spatial orientation (1s, 2s, 2p_x, 2p_y, 2p_z)



/4 02. Explain the following terms by description, example , sketch

a) conformationally rigid molecule (*example, please & brief comment*)

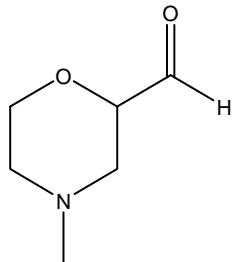
b) racemate

/5 03. Consider

Identify the functional groups (*pay attention to the letters*).

a) _____ b) _____ c) _____

d) What is the number of π bonds? _____


e) What is the number of sp^2 hybridized *carbon atoms*? _____

/5 04. a.) Write a chemical equation for the mono-chlorination of ethane.

b.) What type of reaction mechanism is involved? _____

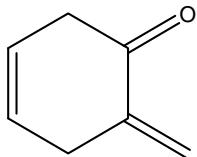
c.) Show the first step of this reaction using proper “curved arrows”.

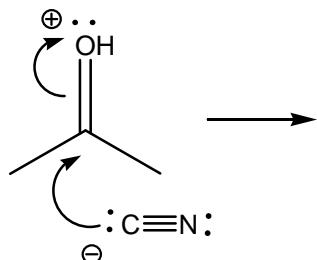
/2 05. Determine the molecular formula for the following bond-line structure.

/4 07. Acetone, CH_3COCH_3 , is a ketone and can act as Bronsted-Lowry acid or base.

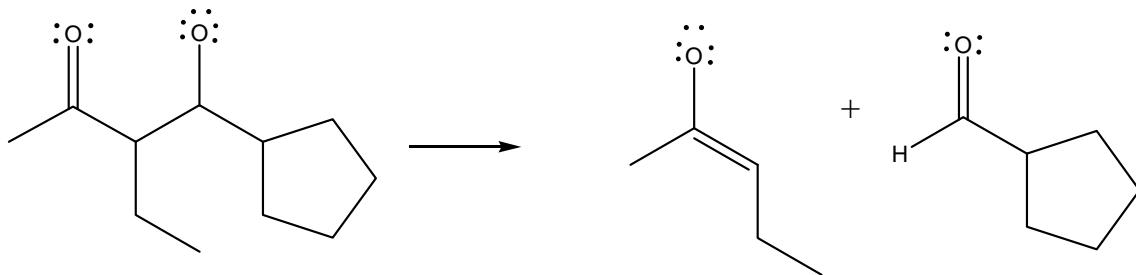
Show the conjugate acid and conjugate base of acetone.

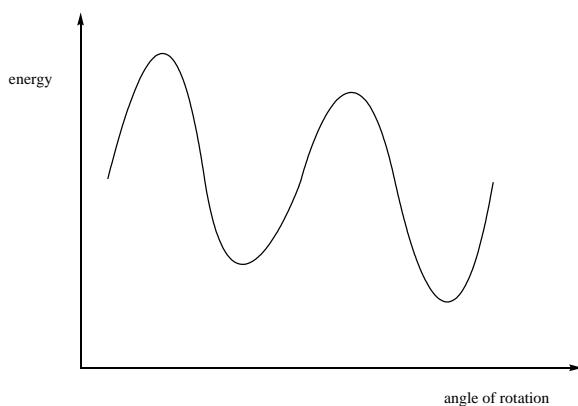
Include non-bonding electrons and formal charges.

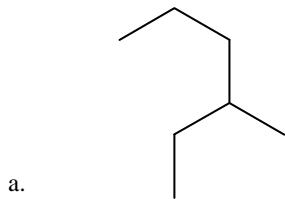

Conjugate Acid

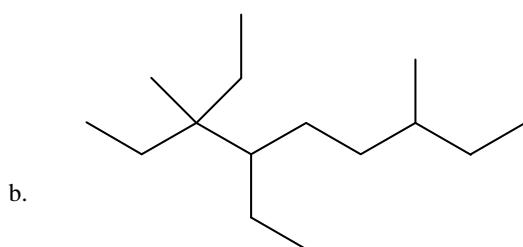

Conjugate Base

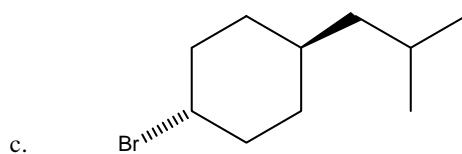
/8 06. For all questions below, show all missing nonbonding electrons and formal charges in both reactants and products.

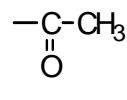
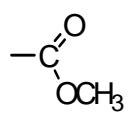
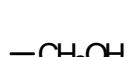

a. Write another significant resonance structure for

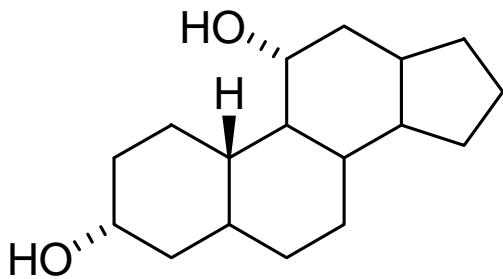

b. What is the result of the reaction indicated by the “curved arrows”?


c. Place appropriate “curved arrows” to effect the following reaction.

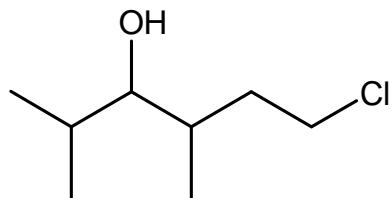

/4 08. The following indicates an energy diagram related to the conformations of butane . (rotation around the C2 - C3 bond). On the diagram, point out where the 2 methyl groups a.) are anti , b.) have a gauche relationship, c.) are eclipsed. Use the letters.


/7 09. Provide names for the following. Ignore R/S designations..

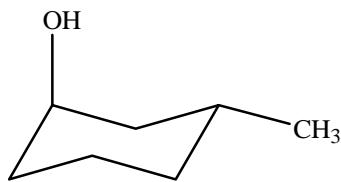


/4 10. Rank the following groups according to the CIP priority rules (Cahn - Ingold – Prelog).

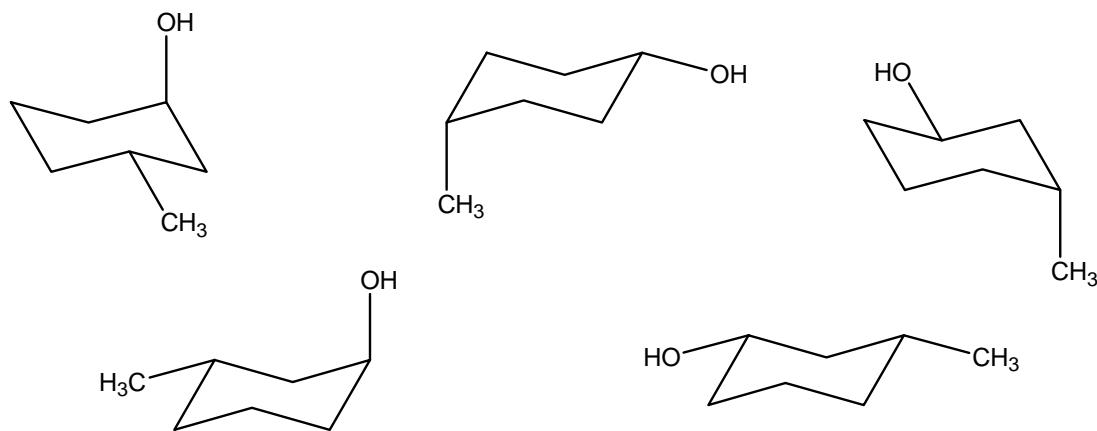

Use the letters; highest priority first: _____

/4 11. Consider the following steroidal compound

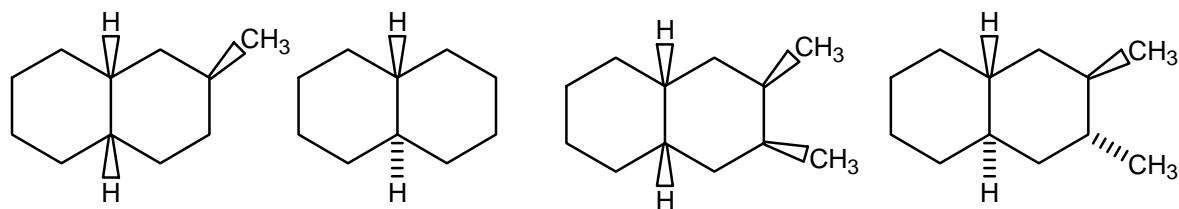
Place the -OH groups on the structure to the right and indicate whether they are equatorial (eq) or axial (ax).


/4 12. On the following, indicate all stereogenic centers by locating stars (*) at the proper places.

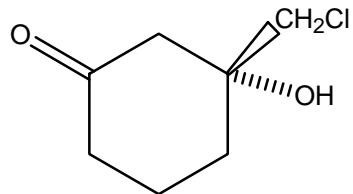
Total number of stereogenic centers: _____


/5

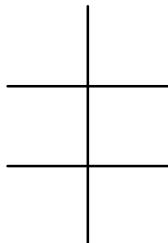
13. Consider


Compare each of the following with the above and indicate whether it is:

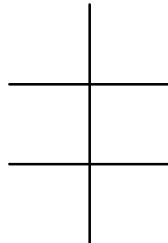
- a) identical conformer, b) different conformer, c) enantiomer, d) diastereomer,
- e) constitutional isomer, f.) not an isomer. Use the letters.


/4

14. Consider the following decalin structures and write underneath whether they are chiral (ch.) or achiral (ach.). Also indicate a plane of symmetry where appropriate.
(wrong answers: -0.5 each)



/4 15. Determine whether the following has R or S configuration.


Priority assignments **must** be shown.

/4 16. Many isomers of dibromobutane are possible. Using the Fischer templates below, show the structures requested underneath. You need to show only the **Br** (bromine) atoms.
(There might be several possibilities.)

a.) meso-2,3-dibromobutane

b.) an achiral dibromobutane other than a.)