

Alkenes II

Electrophilic Addition Rxns

- Hydrohalogenation
- Halogenation
- Halohydrin Formation

Ref 8 : 1, 2, 12, 13

Prob 8 : 2a, 2c, 16, 17, 35, 36, 48

Adv Rdg 8 : 5 – 11

General

alkenes

- act as nucleophiles (base, ...)
- react w/ electrophilic reagents (Lewis acids, ...)
- undergo electrophilic addⁿ rxns

complications: *regiochemistry?*,
stereochemistry?

Electrophiles

(Lewis acids; e^- sinks)

cmpds w/	Ex.
empty “AO”	
low energy empty σ^* MO	

1.) Hydrohalogenation

(addⁿ of HCl, HBr, HI ; usually in ether)

Overall:

Mech:

regiochemistry: where will X go, left or right?

Regiochemistry

“X goes to the more substituted C”
 (= Markovnikov’s Rule)

Ex.

- more stable carbocation formed in step 1
- recall C^+ stability:

$3^\circ > 2^\circ > 1^\circ > \text{methyl}$

∴

chem164/261,A2 fa2010
 hyperconjugation

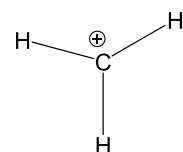
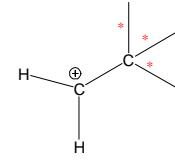
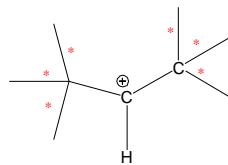
Illustration

- empty p orbital and C,C or C,H σ bond line up
- σ bond feeds e^- ’s into empty p AO
- ∴ pos. charge spread;
 cation stabilized

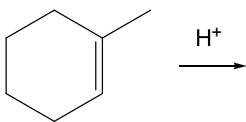
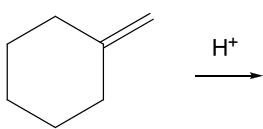
Stability due to Hyperconjugation

aside on:

conjugation




= “interaction between adjacent p orbitals”
 e.g.,

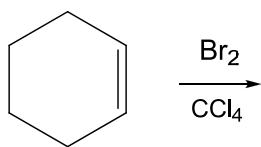
hyperconjugation in carbocations:




= sideways overlap
 between “empty p orbital”
 and “ σ bond on adjacent C”
 “spreads pos. charge, makes cation more stable”

chem164/261,A2 fa2010
 hyperconjugation

- the more adjacent σ bonds, the more stable

Practice

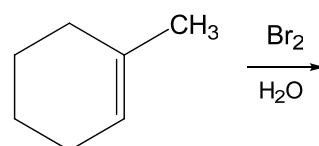

Detailed Mech.

2.) Halogenation

Addⁿ of X_2 in a non-nucleophilic solvent,
esp. CCl_4

Detailed Mech.

Example



Halohydrin Formation

“Halogenation in H_2O ”

Detailed Example

Practice

