

EMR spectrum: γ rays X rays Ultraviolet Visible Infrared Microwaves Radio waves

400 700 nm

Page	Maximum	Score		
1	9	5	4	
2	16	8	8	
3	9	3	6	
4	10	5	5	
5	8	4	4	
6	8	3	5	
Total	60			

a. Provide names or formulas for the following:	1
potassium hydrogen phosphate AuCl ₃	
hydrogen peroxide XeF ₂	
sodium bromite	
 a. Consider the elements F, Ne, and Mg. Which one, do you think, has the greatest isotopic purity, i.e., consists mostly of one isotope? 	
 b. Indicate the mass number and number of neutrons of the element you have chosen under a. 	
c. Give a precise, current definition of one atomic mass unit (u).	
	 a. Provide names or formulas for the following: potassium hydrogen phosphate AuCl₃ hydrogen peroxide XeF₂ sodium bromite a. Consider the elements F, Ne, and Mg. Which one, do you think, has the greatest isotopic purity, i.e., consists mostly of one isotope? b. Indicate the mass number and number of neutrons of the element you have chosen under a. c. Give a precise, current definition of one atomic mass unit (u).

/4

- 2
- /8 3. a. Write a balanced equation for the combustion (reaction with oxygen) of acetone (C₃H₆O) to form water and carbon dioxide.
 - A particular sodium/oxygen compound contains 59% sodium by mass.
 What is the empirical formula of this compound. Show the work.

- /9 5. a. Determine the formal charges for the following species.
 - i. Show the formal charges on the structures directly.
 - ii. Underneath each structure indicate the overall charge.

b. i. Write a reasonable Lewis structure for the hydrogen sulfate anion, HSO_4^- .

ii. Write one acceptable resonance structure for the above.

iii. How many types of S,O bonds are present? *Question relates to resonance!* Re-write the skeletal structure and identify the types with letters.

- c. The C/H molar ratio in a particular hydrocarbon is 1 : 1. Its molar mass is approximately 90 g/mol.What is the molecular formula for this hydrocarbon? Show the work.
- /8 4. a. Indicate the electron configuration for tungsten, element # 74 (shorthand notation acceptable):
 - b. How many unpaired electrons are present in Fe²⁺. Show the work.
 (Remember 4s & 3d electrons are close in energy)
 - c. Compare the (first) ionization energies for the following elements. In each case, circle the element with the larger ionization energy.
 - i. Be, B ii. B, C
 - iii. C, N iv. N, O

						_	
		4				2	
/10	/10 6. For the following show: i. Lewis structure			/8 7. Are the following molecules polar?			
	ii geometric arrangements of electron groups; <i>in words</i>			Show the work by giving i. <i>Lewis structure</i> , ii. <i>molecular shape</i> and iii. <i>bond dipoles</i> .			
	iii. atom arrang	ement & molecular shape; in words and sketch		a. HCN	b. SF ₄		
	iv. hybridizatio	n of the central atom acc. to V.B. theory		i.			
	a. NOCl (N central)	, iii.					
	i						
				ii. & iii			
	ii.	iv.					
	b. ICl_4^- anion						
	i.	iii.					
				ans			
	ii.	iv.					

6

b. The following is a rough sketch of the Balmer series ($n_f = 2$) of the emission spectrum of the hydrogen atom.

- i. Place the letter A on top of the line that relates to the transition from n = 3.
- ii. Place the letter B on top of the line that relates to the photon with the highest energy in this series.
- iii. Place a line (marking it with a *) that relates to the first ionization energy of the hydrogen atom. *Relative position only*.