18- Electron Rule.

Recall that for MAIN GROUP elements the octet rule is used to predict the formulae of covalent compounds.

This rule assumes that the central atom in a compound will make bonds such This rule assumes that the central atom in a compound will make bonds such MAXIMUM CAPACITY OF THE s and p orbitals.

```
This rule is only valid for
Period 2 nonmetallic elements
```

The 18 -electron Rule is based on a similar concept.
The central TM can accommodate electrons in the s, p, and d orbitals.

$$
s(2), p(6), \text { and } d(10)=\text { maximum of } 18
$$

This means that a TM can add electrons from Lewis Bases (or ligands) in addition to its valence electrons to a total of 18

This is also known Effective Atomic Number (EAN) Rule
Note that it only applies to metals with low oxidation states

18 Electron Rule cont'd

Example 1.
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}{ }^{+3}\right.$

Example 2.
$\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$
Oxidation state of Co ? Electron configuration of Co ?
Electrons from Ligands?
Electrons from Co?
Total electrons?

Oxidation state of Fe ?
Electron configuration of Fe ?
Electrons from Ligands?

Electrons from Fe ?
Total electrons?
What can the EAN rule tell us about $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$?
It can't occur...... 20-electron complex.

EAN Summary

1. Works well only for d-block metals. It does not apply to f-block metals
2. Works best for compounds with TMs of low ox. state.
3. Ligands which are good σ-donors and π-acceptors utilize all the valence orbitals and thus such compounds obey this rule.
4. Complexes which contain a combination of σ-donors and π-acceptors conform to this rule. (e.g. $\left.\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{3}(\mathrm{CO})_{3}, \mathrm{Cr}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)(\mathrm{CO})_{3}\right)$.
5. Compounds which obey this rule are kinetically inert to substitution reactions.
6. Exceptions to the rule occur at the two ends of the transition series where $n d,(n+1) s$, and $(n+1) p$ valence orbitals are less well matched in energy.

Let's talk about electron counting briefly.

Sandwich Compounds Obeying EAN

Let's draw some structures and see some new ligands.

Each of these ligands is π-bonded above and below the metal center
Ferrocene is an interesting example.

Half-Sandwich Compounds Obeying EAN

Let's draw some more structures.
$\mathrm{CO}, \mathrm{NO}, \mathrm{H}$, and PR_{3} can be brought together in combination to give 18 electrons.

Some other cool ligands.

These cyclic ligands need not be planar.
Here are some examples of compounds of cyclooctatetraene.

Can a reaction involve only compounds which obey the 18 electron rule?
YES.

Compounds and the EAN Rule

We can divide compounds into three groups.

1. Electronic configurations are completely unrelated to the EAN rule. The central metal may have >, <, = 18 electrons.
2. Electron configurations follow the EAN rule and never have >18 electrons, but may have less.
3. A group that follows EAN rule rigorously.

How can we understand this?

Chemistry and "Magic Numbers"

The Octet Rule: Period 2 nonmetallic elements tend to form compounds resulting in eight electrons around the central atom. You have been told this is because elements desire a pseudo-noble gas configuration.

This is a VAST simplification.
Stable Fullerenes: The allotrope of Carbon known as fullerenes (C_{60} or "Bucky-ball" is the most famous) take on a cage structure and it has been observed that particular numbers of C atoms yield more stable compounds.

$$
C_{60}, C_{70}, C_{76}, C_{84}, C_{90}, C_{94}
$$

Nanoparticles: Metal Nanoparticle are really COOL! It has been observed that "magic numbers" of atoms preferentially come together to form table structures

Bonding in TM Complexes: Many TM complexes will form with 18 electrons around the central metal atom. It was first observed by Sedgwick in 1927.

18- Electron Rule.

Recall that for MAIN GROUP elements the octet rule is used to predict the formulae of covalent compounds.

Think about Na^{+}and C

This rule assumes that the central atom in a compound will make bonds such that the total number of electrons around the central atom is 8 .

THIS IS THE MAXIMUM CAPACITY OF THE s and p orbitals.
This rule is only valid for
Period 2 nonmetallic elements.

The 18 -electron Rule is based on a similar concept.
The central TM can accommodate electrons in the s, p, and d orbitals.

$$
s(2), p(6), \text { and } d(10)=\text { maximum of } 18
$$

This means that a TM can add electrons from Lewis Bases (or ligands) in addition to its valence electrons to a total of 18

This is also known Effective Atomic Number (EAN) Rule

Simple Examples of the 18 Electron Rule

Example 1.
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}{ }^{+3}\right.$
xidation state of Co ?
$\left.\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+3} \quad$ Electron configuration of Co ?
Electrons from Ligands?
Electrons from Co?
Total electrons?

Example 2.
Oxidation state of Fe ?
Electron configuration of Fe ?
Electrons from Ligands?
Electrons from Fe ?
Total electrons?
What can the EAN rule tell us about $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$?
It can't occur...... 20-electron complex.

Approach 1 to counting

Oxidation State Electron Count. Ligands are viewed as "close-shelled" entities (No radicals). This is what we did in the earlier examples.

We dissect the structure

When neutral Lewis base ligands (like NH_{3}) are considered they are viewed as neutral molecules with 2 electrons for donation to the metal.

Ligands like methyl $\left(\mathrm{CH}_{3}\right.$ and Cl$)$ are viewed as anions....NOT AS NEUTRAL RADICALS. (By definition H is viewed as H^{-})

After removal of the ligands the metal is assigned a formal charge.

$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$	$\mathrm{Ni}^{0} 10 \mathrm{e}$-, CO 2 e - each (8) = 18
$\left[\mathrm{PtCl}_{2}\left(\mathrm{PMe}_{3}\right)_{2}\right]$	$\mathrm{Pt}^{2+} 8 \mathrm{e}-\mathrm{Cl}-2 \mathrm{e}-$ each (4), $\mathrm{PMe}_{3} 2 \mathrm{e}-$ each (4) $=16$
[$\mathrm{Ta}(\mathrm{Me})_{5}$]	$\mathrm{Ta}^{5+} \mathbf{0} \mathrm{e}, \mathrm{Me}-2 \mathrm{e}-\mathrm{each}(10)=10$
$\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$	

$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
$\left[\mathrm{PtCl}_{2}\left(\mathrm{PMe}_{3}\right)_{2}\right]$
$\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$

Approach 2 to counting

Neutral Atom Counting.
The general premise to this approach is:
REMOVE ALL THE LIGANDS FROM THE METAL AS NEUTRAL SPECIES
This approach results in no difference for neutral ligands like NH_{3} or CO . BUT

For ligands such as methyl we remove the ligand as a radical. It is therefore a single electron donor in this model

Furthermore, in this model both the ligand and the metal must donate an electron to the bond.

This method provides NO information about the metal oxidation state.

Look at CO complexes of Mn

You may expect to have the following structure for a CO complex of Mn

CO	Mn 7
$\mathrm{OC}-\mathrm{Mn}-\mathrm{CO}$	3 CO Terminal 10
OC CO	Total 17 electrons

7

Prediction of Structure.

(metal carbonyls)
You may expect to have the following structure for a CO complex of Mn.

What about?

Co 9 3 CO Terminal 6 2 CO Bridging 2 1 Co-Co 1

Is this the only possible structure for bis[tetracarbonylcobalt]?
The EAN Rule cannot differentiate structures of compounds but it CAN provide possibilities for investigation

Compounds and the EAN Rule

We can divide compounds into three groups.

1. Electronic configurations are completely unrelated to the EAN rule. The central metal may have >, <, = 18 electrons.
2. Electron configurations follow the EAN rule and never have >18 electrons, but may have less.
3. A group that follows EAN rule rigorously.
(This is what I have shown you so far)
How can we understand this?

Group II

	(d-electrons, valence)
$\mathrm{Zr}\left(\mathrm{CH}_{3}\right)_{2}{ }^{2 .}$	$(0,12)$
Ti(en) ${ }^{3-}$	$(1,13)$
$\operatorname{Re}(\mathrm{NCS})_{6}{ }^{-}$	$(2,14)$
$\mathrm{Mo}(\mathrm{NCS})_{6}{ }^{3 .}$	$(3,15)$
$\mathrm{Os}\left(\mathrm{SO}_{3}\right)^{6 .}$	
${ }^{1 r}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}^{2+}$	You figure out.

Strong sigma donation increases e_{g} energy and increases Δ_{o}

Little or no pi interaction between metals and ligands. Energy of the $\mathrm{t}_{2 \mathrm{~g}}$ orbitals is the sam as the free metal. Their occupation has no impact on the stability of the complex.

There are 6 low energy bonding MO's, 3 medium energy MO's and and 6 strongly antibonding MO's (too high energy to be occupied).

12 electrons from the ligands fill the lowest energy orbitals (blue). Up to 6 metal electrons reside in the $\mathrm{t}_{2 \mathrm{~g}}$ set (nonbonding) without any destabilization of bonding.
Δ_{0} is so large that electrons cannot be put into the e_{g} set without large penalty
 H increase Δ p Pi accepting ligands lower $t_{2 g}$ energy. BO

9 strongly antibonding MO's (too high energy to be occupied).
12 electrons from the ligands and 6 metal electrons in the $t_{2 g}$ orbitals fill the lowest energy orbitals (blue). Removal of the d electrons from the $t_{2 g}$ set would destabilize the bonding
Δ_{0} is so large that electrons cannot be put into the e_{g} set without large penalty

Examples include CO and NO ligands which are at the top of the SCS.

EAN Summary

1. Works well only for d-block metals. It does not apply to f-block metals
2. Works best for compounds with TMs of low ox. state.
3. Ligands which are good σ-donors and π-acceptors utilize all the valence orbitals and thus such compounds obey this rule.
4. Complexes which contain a combination of σ-donors and π-acceptors conform to this rule. (e.g. $\left.\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{3}(\mathrm{CO})_{3}, \mathrm{Cr}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)(\mathrm{CO})_{3}\right)$.
5. Compounds which obey this rule are kinetically inert to substitution reactions.
6. Exceptions to the rule occur at the two ends of the transition series where $n d,(n+1) s$, and $(n+1) p$ valence orbitals are less well matched in energy.

This Rule allows for prediction of structures, reactivity, and reaction mechanisms.

Bridging or Terminal CO

Terminal co bonding a Tor 1.5 cila symmetry differences between carbon monoxides.

Terminal CO bond $1887 \mathrm{~cm}^{-1}$ Bridging CO bond at $1770 \mathrm{~cm}^{-1}$

A cartoon of M-CO bonding.
The HOMO in carbon monoxide
is the high energy $\sigma^{\text {NB }}$ which is
primarily derived from a carbon
$2 p$ orbital.

Reactions of Metal Carbonyls.

i) Substitution of CO by other L

(L is often a π-acid or Soft Lewis base; $L=P R_{3}$, polyolefins, $\mathrm{SR}_{2}, \mathrm{CH}_{3} C N$)
Recall that TM carbonyls obey the 18 electron rule.

This means two things...

They are inert toward substitution.
Reactions must proceed via a Dissociative mechanism (via M-CO bond cleavage)
This provides a basis for photochemistry:
If light of a suitable energy is supplied such that
$\sigma \Rightarrow \sigma^{*}$ can occur some interesting things happen.

M-CO photochemistry Examples

Another example involving Fe and an 18 electron transition state

These anions are of significant importance. They are nucleophiles and react further to form M-C and M-H bonds.

Collman's Reagent

Application of "carbonylmetallates" in organic synthesis

Disodium tetracarbonylferrate is useful in the functionalization of organic halides.

Reactions of Coordinated M-CO

The attachment of CO to a TM makes the C electrophillic and may be attacked by a nucleophile)

This is a carbene complex; E.O. ischer discovered this type o Prize with Wilkinson.

The "(CO) $)_{5} \mathrm{Co}^{\prime}$ structural unit acts as an electron withdrawing; It is a pseudo ester

Trans-esterification

The Mond Process

Nickel carbonyl, a gas formed from carbon monoxide and metallic nickel.

Scientific Serendipity
In 1890 Ludwig Mond, was investiga nickel valves used in apparatus for the Solvay process**, and discovered $\mathrm{Ni}(\mathrm{CO})_{4}$
In contrast to many nickel compounds which are usually green solids, $\mathrm{Ni}(\mathrm{CO})_{4}$ is a colourless, volatile, toxic liquid with a very "organic character".
He used it as the basis of a method to purify nickel, called the "Mond process".

Ni reacts with CO (leaving the impurities behind), to form $\mathrm{Ni}(\mathrm{CO})_{4}$.
The $\mathrm{Ni}_{(1)}(\mathrm{CO})_{4}$ is passed through a tower filled with nickel pellets at a high velocity and 400 K Pure Ni plates out on the pellets.
A commercial process for the manufacture of $\mathrm{Na}_{2} \mathrm{CO}_{3} . \mathrm{NH}_{3}$ and CO_{2} are passed into a sat'd $\mathrm{NaCl}_{(a 9)}$ solution to torm soluble (NH_{4}) HCO_{3}, , blich reacts $15{ }^{\circ} \mathrm{C}$. The NaHCO , is fitered off and heated to produce $\mathrm{Na}_{2} \mathrm{CO}_{3}$, the reactor temperature is maintained below $15^{\circ} \mathrm{C}$. The NaHCO_{3} is filtered off and heated to produce $\mathrm{Na}_{2} \mathrm{CO}$

