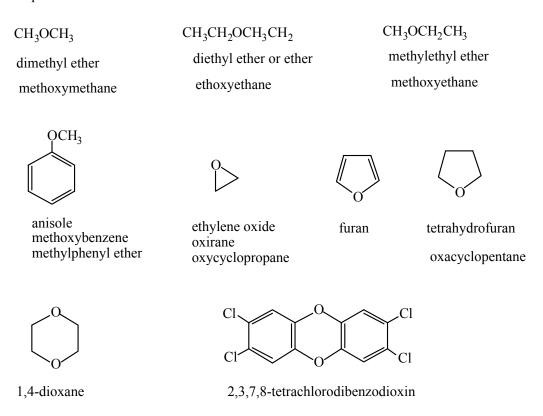
Ethers

General formula R-O-R'


Properties

Ethers are generally unreactive, but due to the presence of the lone pairs on oxygen, unlike hydrocarbons, they are soluble in concentrated sulfuric acid:

$$R-O-R' + H_2SO_4 \longrightarrow R-O-R' + HSO_4$$

Nomenclature

The IUPAC rules name the R-O- group as an alkoxy group attached to the longest chain, however the compounds are often named as ethers.

Synthesis

1. From alcohols and phenols - the Williamson ether synthesis

$$2 \text{ ROH} + 2 \text{ Na}$$
 \longrightarrow $2 \text{ RO}^{-} \text{ Na}^{+} + \text{ H}_{2}$ $2 \text{ RO}^{-} + \text{ R'X}$ \longrightarrow $\text{R-O-R'} + \text{ X}^{-}$

This is an S_N 2 reaction so is fast when R'X is a primary halide, but does not go when R'X is a tertiary halide.

for example

however
$$CH_3$$
 H_3C CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

For the Williamson ether synthesis to go, the alkoxide can be primary, secondary or tertiary, but the alkyl halide should be primary or secondary.

Preparation of epoxides by internal Williamson type synthesis

$$CH_2 = CH_2 + Br_2 + H_2O \longrightarrow H_2C - CH_2 \longrightarrow OH$$

$$OH \longrightarrow OH$$

$$OH \longrightarrow H_2C - CH_2$$

$$OH \longrightarrow OH$$

$$H_2C - CH$$

$$H_2C - CH$$

$$OH \longrightarrow OH$$

$$OH \longrightarrow$$

2. Alkoxymercuration
$$CH_3 \quad Hg(OCOCH_3)_2/CH_3CH_2OH \quad CH_3$$

$$H_2C = C \quad Hg \quad OCH_2CH_3$$

$$CH_3 \quad Hg(OCOCH_3)_2/CH_3CH_2OH \quad CH_3$$

$$H_2C = C \quad CH_3 \quad Hg \quad OCH_2CH_3$$

$$OCH_2CH_3 \quad OCH_2CH_3$$

Almost any alkene and any alcohol can be used in this synthesis

e.g.
$$HC=CH_2$$
 OH $CH-CH_3$

$$0 - C-CH$$
 $CH-CH_3$

$$2) NaBH_4, OH^-$$

Reactions of ethers

Inert chemically

The most important reaction is cleavage by hydrogen iodide

R-O-R' + 2HI
$$\longrightarrow$$
 2 RI + H₂O
e.g. H_3C —CH-O-CH-CH₃ $\xrightarrow{\text{excess HI}}$ 2 H_3C —CH-I + H₂O
 CH_3 CH_3

Epoxides are very reactive due to the angle strain in the 3-membered ring. They are very useful in syntheses

Epoxides can be used in the synthesis of alcohols

This reaction can be used to increase the alkyl chain by 2 carbon units

Synthesis of cis-7,8-epoxy-2-methyloctadecane

cis 7,8-epoxy-2-methyl-octadecane

HC = CH, $Br(CH_2)_0 CH_3$ and Synthesise this molecule from and any inorganic reagents needed.