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Cell Aggregation by Scaffolded Receptor Clusters

from two to four copies of identical subunits [22, 23].Jason E. Gestwicki,2 Laura E. Strong,1,4

Lectins aggregate cells when they crosslink glycopro-Christopher W. Cairo,1 Frederick J. Boehm,1

teins or glycolipids on adjacent cell surfaces. Aggrega-and Laura L. Kiessling,1,2,3

tion can be modulated by altering the number of active1Department of Chemistry
monomers within the lectin oligomer. For example, the2 Department of Biochemistry
ability of the mannose binding plant lectin concanavalinUniversity of Wisconsin-Madison
A (Con A) to aggregate red blood cells is greatly de-Madison, Wisconsin 53706
creased when the lectin is forced from the tetrameric
into the dimeric form by succinylation [20]. Increasing
the valency of a lectin would be expected to enhance

Summary its ability to promote cell aggregation. Methods for gen-
erating soluble lectin complexes with higher-order va-
lencies, however, have not been described. We soughtThe aggregation of cells by lectins or antibodies is
to develop a strategy for the formation of lectin assem-important for biotechnological and therapeutic appli-
blies with valencies beyond those accessible to naturalcations. One strategy to augment the avidity and ag-
lectins. We envisioned that the resulting complexesgregating properties of these mediators is to maximize
would possess enhanced cell aggregation properties.the number of their ligand binding sites. The valency

To augment cell avidity, we set out to assemble aof lectins and antibodies, however, is limited by their
natural lectin on a synthetic scaffold. It has been shownquaternary structures. To overcome this limitation, we
that low-molecular-weight synthetic ligands displayingexplored the use of polymers generated by ring-open-
a few carbohydrate residues can interact with multipleing metathesis polymerization (ROMP) as scaffolds to
copies of lectins [21, 24–27]. For example, divalent ornoncovalently assemble multiple copies of a lectin,
trivalent displays of mannose can assemble solublethe tetravalent protein concanavalin A (Con A). We
clusters of Con A tetramers [28, 29]. We envisioned thatdemonstrate that complexes between Con A and
extended polymeric displays of mannose would alsomultivalent scaffolds aggregate cells of a T cell leuke-
possess this ability; thus, these carbohydrate-bearingmia line (Jurkat) more effectively than Con A alone.
ligands could be used as templates to create macromo-We anticipate that synthetic scaffolds will offer a new
lecular assemblies containing multiple lectins. We havemeans of facilitating processes that rely on cell aggre-
previously synthesized polymers displaying mannosegation, such as pathogen clearance and immune rec-
by ring-opening metathesis polymerization (ROMP) [30].ognition.
ROMP allows the generation of linear polymer chains
of distinct valencies [31] bearing pendant residues com-
petent for interaction with cell surfaces [32–34] or solu-Introduction
ble receptors, including the lectin Con A [30, 35–38].
Based on the activity of these materials in assays withMany proteins, including lectins and antibodies, pos-
Con A, we hypothesized that multiple Con A tetramerssess multiple ligand binding sites. These proteins can
could assemble on these polymers by interaction of themediate cell aggregation by binding to cell surface li-
lectins with the pendant mannose residues [38]. Wegands on apposing cells. Cell aggregation is a key event
predicted that the lectin-polymer complex would pos-that has been exploited for the development of diag-
sess unoccupied mannose binding sites for interactionnostics for pathogen detection [1], therapeutics [2–5],
with cell surface ligands [28].blood-typing tests [6], and other biotechnological appli-

Materials synthesized by ROMP are well-suited tocations [7–9]. One of the most exciting applications of
these studies because their average length can be con-this technology has been the targeted aggregation of
trolled. The ability to control this feature of the polymerspathogenic species. Aggregation of pathogenic entities
is due to the relatively fast rate of initiation compared(e.g., bacteria [5] or phage particles [10]) can lead to the
to that of propagation. The ratio of monomer to catalystclearance of the resulting aggregates [11] and protection
in these reactions determines the average chain length offrom infection [12, 13]. The propensity of a multivalent
the resultant polymer [39–41]. Thus, we could explore theprotein to mediate cell aggregation is determined by
effect that the number of mannose residues has on the

how avidly it binds to the cell surface. One effective way
number of Con A tetramers that are assembled. We found

to increase the avidity of these interactions is to increase
that polymer valency determines the average number

the number of cell surface binding pockets [14–16]. Ef- of Con A tetramers that assemble on the oligomeric
forts aimed at this objective have focused on generating scaffold. Moreover, the resulting Con A-polymer com-
novel multimers of antibody scFv fragments [17, 18] or plexes are highly effective agents for aggregating cells.
favoring oligomer formation for lectins [19–21].

Lectins are a large class of saccharide binding pro- Results and Discussion
teins, many of which are homo-oligomers assembled

Multivalent ROMP-Derived Scaffolds Can Induce
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Park, 505 South Rosa Road, Madison, Wisconsin 53719. ate higher-order lectin clusters. We examined the ability
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Figure 1. Chemical Structures of Mannose-Bearing Compounds

The average valency (n) was calculated by using 1H NMR integration.

of ROMP-derived oligomers (Figure 1) to assemble mul-
tiple Con A tetramers by using quantitative precipitation
(Figure 2A). The precipitation of Con A depends on the
clustering of Con A tetramers, and this endpoint has
been used to determine the stoichiometry of insoluble
Con A-ligand complexes [42]. When 1–5 were intro-
duced to Con A, monomeric compound 1 was unable
to induce precipitation, as expected. Multivalent ligands
2–5, however, caused concentration-dependent precip-
itation of Con A. The concentration of the higher-valency
materials 3–5 that was required to induce precipitation
was lower than that required for the shorter oligomer 2.
The concentration of 2 required to induce maximum
precipitation was 18 �M (calculated by the concentra-
tion of polymer, see Experimental Procedures), approxi-
mately one half of the concentration of Con A tetramers
in solution. This indicates that the stoichiometry of Con
A tetramers per scaffold in these precipitates is approxi-
mately 2:1 [42]. The concentrations of 3, 4, and 5 that Figure 2. Quantitative Precipitation of Con A
were required to induce maximum precipitation were (A) Compounds 1–5 were used to precipitate tetrameric Con A.
substantially lower (6 �M, 9 �M, and 5 �M, respectively). (B) Compounds 1–5 were used to precipitate succinylated Con A.

Ligand concentration in these graphs is plotted as a function ofThese correspond to stoichiometries of approximately
polymer concentration, which is determined by using the degree of4–6 Con A tetramers per scaffold.
polymerization (dp) to calculate average molecular weight. ResultsTo further examine the effects of valency on Con A
are the average of three independent experiments, and error bars

assembly, we conducted additional precipitation experi- represent single standard deviations. Some error bars are smaller
ments with dimeric succinylated Con A. Compared to than the symbols.
the precipitation of tetrameric Con A, the precipitation
of succinylated Con A is less efficient [42]. Only the
highest valency compounds 4 and 5 were able to precip- Multivalent ROMP-Derived Scaffolds Form
itate succinylated Con A (Figure 2B). The concentration Soluble Aggregates of Con A in Solution
of 4 that was required for maximum precipitation of The quantitative precipitation results demonstrated that
succinylated Con A was 10 �M, one fourth the concen- Con A clusters can form in the presence of multivalent
tration of succinylated Con A dimers present in these polymers. These experiments examined insoluble clus-
assays (44 �M), indicating a 4:1 (receptor:scaffold) stoi- ters, however, and we sought to characterize the forma-
chiometry in the precipitate. The concentration of 5 that tion of clusters in solution. The assembly of Con A on
was required for maximum precipitation was 5 �M, indi- mannose scaffolds in solution can be monitored by
cating a stoichiometry of approximately 9 receptors per FRET [28]. Con A can be labeled with either fluorescein
scaffold. These results suggest that the number of man- to generate a donor for FRET or tetramethylrhodamine
nose units displayed by the scaffold is a key determinant (TMR) [43, 44] to generate an acceptor. When these
in the formation of insoluble protein-scaffold com- derivatives are within approximately 80 Å of each other,

the fluorescein emission intensity is quenched. Althoughplexes.
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Compounds 1–5 were each added to a solution con-
taining fluorescein- and TMR-labeled Con A. We moni-
tored the emission intensity of fluorescein at 520 nm to
ascertain whether these scaffolds promote the forma-
tion of soluble Con A clusters. Con A was clustered
in the presence of multivalent polymers 2–5 but not
monomeric compound 1 (Figure 3). The maximum
quenching induced by 4 and 5 was greater (30% and
50% respectively) than that caused by the lower-valent
compounds 2 and 3 (18%). The scaffolds 1–5 were not
fluorescent at 520 nm (data not shown). This result pro-
vides further evidence that the extent of Con A clustering
depends on scaffold valency.

The fluorescence quenching was dependent not only
on the valency of the multivalent mannose derivative
but also on its concentration. Interestingly, the efficiency
of quenching first increased as scaffold concentration
increased and then decreased as the concentration was
increased further. The absence of quenching at high
multivalent ligand concentrations suggests that Con A

Figure 3. FRET Experiments clusters are disfavored at these concentrations. As
stated above, we could not detect the formation of insol-Compounds 1–5 were each added to a mixture of fluorescein- and

TMR-Con A as discussed in the Experimental Procedures. The emis- uble clusters, and the polymer displays are not fluores-
sion intensity of fluorescein is plotted as the percent of the fluores- cent. Thus, the most likely mechanism for the increase
cence of an untreated sample. Concentrations on the x axis refer is that mannose binding site saturation is occurring.
to the concentration of mannose residues. Results are the average

When polymer concentrations are high, each mannoseof three to five independent experiments, and error bars represent
binding site on Con A can be occupied by an individualsingle standard deviations.
polymer, thereby precluding the clustering of multiple
lectins. Thus, complexes containing multiple Con A tet-

the formation of insoluble aggregates also could influ- ramers could be assembled readily on 2–5 when inter-
ence the FRET signal, these do not form at the low mediate multivalent scaffold concentrations (e.g., man-
concentrations of fluorescent protein needed for FRET nose residue concentrations of 0.5–5 �M) were used,
experiments. Thus, changes in fluorescence intensity but they were less likely to form when the concentration

of the scaffold was either lower (� 0.1 �M mannoseprobably report on the formation of soluble clusters.

Figure 4. Proposed Complex between Con A
and a Multivalent ROMP-Derived Scaffold

A polymer of 50 monomer units was modeled
in MacroModel 6.5, as discussed in the Ex-
perimental Procedures. A complex was as-
sembled between this polymer and Con A
tetramers. The structure of Con A was pre-
viously determined by X-ray crystallography
[50]. The stoichiometry was chosen on the
basis of results from transmission electron
microscopy experiments [38] and the quanti-
tative precipitation and FRET results pre-
sented here.
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Figure 5. Aggregation of Jurkat Cells by Con A and Scaffolded Con A

(A) Selected microscopy fields show the results of experiments in which cells were labeled with a fluorescent dye and treated with buffer (i),
Con A (75 �g/mlL, ii), or Con A with 50 �M 5 (iii). Jurkat cells were fixed with 2% paraformaldehyde to prevent activation of the cells by Con
A. Con A concentrations are calculated based on the tetrameric form, and ligand concentrations are reported as mannose residue concentra-
tions. Arrows point to aggregates. All fields are at 200� magnification.
(B) Quantitation of microscopy fields as described in the Experimental Procedures. A solution of 5 and Con A was added to Jurkat cells, and
the macroscopic aggregation index (MAI) was determined as previously described [53]. Results are the average of 2–4 independent experiments,
and error bars represent single standard deviations.
(C) The average number of cells included in clusters was determined with image analysis, as described in the Experimental Procedures.
Clustering was mediated by either 75 �g/ml Con A alone or Con A with 5 (50 �M mannose residues). Error bars represent the standard
deviation.
(D) Jurkat cells were aggregated with Con A at 75 �g/ml, and the MAI was determined by microscopy. The addition of 100 mM methyl �-D-
mannopyranoside (MeMan) disrupted Con A-induced aggregate formation. Complexes of Con A and 5 were formed from 75 �g/ml Con A and
5 (50 �M mannose residues). Compound 5 alone possessed little or no ability to aggregate cells, even at high concentrations (2.5 mM mannose
residues).

residues) or higher (� 50 �M mannose residues). These the amount of aggregation was quantitated by determi-
data reveal that cluster formation can be controlled by nation of the macroscopic aggregation index (MAI; see
scaffold valency and concentration. Experimental Procedures). Upon the addition of a pre-

mixed solution of 5 (50 �M mannose residues) and Con
A (75 �g/ml), an enhancement of cell aggregation ofScaffolded Con A Enhances Aggregation
approximately 60% over Con A alone was observedof Leukemia Cells
(Figure 5B). This increase in MAI was not due to theWe hypothesized that, under conditions that favor mac-
disruption of large aggregates into smaller clusters ofromolecular complexation, lectins assembled on poly-
cells; the aggregates that formed in the presence of themer scaffolds would possess unoccupied saccharide
mixture of Con A and 5 were of similar or greater sizebinding sites (Figure 4). These sites would be poised
than those formed by Con A alone (Figure 5C). Withoutto interact avidly with cell surface glycoproteins, and
Con A, 5 was a poor aggregating agent (Figure 5D),complexation of adjacent cell surfaces would result in
indicating that the combination of 5 and Con A wascell aggregation. To test this hypothesis, we studied the
necessary for the enhanced aggregation of cells. Cellability of Con A-scaffold complexes to aggregate cells
aggregation was sensitive to the concentration of 5.of the Jurkat human T cell leukemia line.
High concentrations of 5 disrupted aggregation, pre-When Con A was added to fluorescently labeled Jur-
sumably by saturating saccharide binding sites on Conkat cells, cell aggregation occurred (Figure 5). Aggre-

gates were visualized by fluorescence microscopy, and A. This result is consistent with that expected from the
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multivalent materials for the presentation of multiple
copies of a protein may also be accomplished by cova-
lent attachment. We expect that these modes of protein
presentation will find application in the development of
diagnostic and therapeutic agents.

Significance

The binding of a multivalent receptor to multiple cell
surface ligands can promote cell and viral particle ag-
gregation. The strength and stability of these interac-
tions are dependent on the number of unoccupied
sites available for receptor binding to the cell surface.
Here we have shown that ROMP-derived materials of
sufficient valency can act as scaffolds for the assem-
bly of multiple Con A tetramers; the resulting clusters
are highly effective mediators of cell aggregation. The
ability of these polymers to assemble clusters de-
pends on their valency and concentration; thus, the
activity of the scaffold is tunable. These results offer
new avenues for sensitive diagnostic agents and the
synthesis of materials that facilitate the clearance of
pathogens.

Experimental Procedures

Synthesis of Multivalent Ligands
The syntheses and Con A binding properties of compounds 1–4 have
been reported [30]. Compound 5 was synthesized by an analogous
route. The average valency (n) is based on the calculated degree
of polymerization (dp) for each compound as determined by 1H NMR
spectroscopy.

Figure 6. Models for the Aggregation of Cells by Con A Quantitative Precipitation
Quantitative precipitation experiments and their analyses were car-(A) Two hypothetical cell surfaces bearing multiple mannose-ter-
ried out by a method modified from that previously described byminated glycans (red circles) can be aggregated by tetravalent
Khan et al. [42]. In brief, Con A (Vector Laboratories, Burlingame,Con A.
CA) and scaffold were dissolved in precipitation buffer (0.1 M Tris-(B) The observed enhancements in cell aggregation in the presence
HCl [pH 7.5], 90 �M NaCl, 1 mM CaCl2, 1 mM MnCl2), vortexed brieflyof multivalent ligands probably arise from the increased avidity of
to mix, and then incubated for 5 hr at room temperature (or 2 daysthe Con A-scaffold complex for the cell surface. It is highly unlikely
at 4�C for succinylated Con A). The final concentration of Con Athat the Con A-scaffold complexes span more than two cell surfaces
tetramers was 30 �M (if one assumes Con A tetramers to have asimultaneously; the total length of the complex [38] is approximately
molecular mass of 104,000 Da), and that of succinylated Con A20 nm, and the average size of a Jurkat cell is between 5,000 and
dimers was 44 �M (if one assumes that dimers have a mass of10,000 nm.
52,000 Da). The concentrations of mannose-bearing polymers are
estimated based on the dp for each polymer. In all other experi-

lack of FRET at high multivalent ligand concentrations. ments, the concentrations are based on total mannose concentra-
tion (or mannose residue).We postulate that the enhanced aggregation of Jurkat

The white precipitates that formed after the incubation periodcells by scaffolded Con A is due to the increased avidity
were pelleted by centrifugation at 5000 � g for 2 min. Supernatantsof the complexes for cell surface glycans and that this
were removed by pipet, and pellets were gently washed twice with

increase occurs as a result of an increase in available ice-cold precipitation buffer. Pellets were then resuspended in 600
binding sites (Figure 6). �l 100 mM methyl �-D-mannopyranoside (100 �l for succinylated

Our results demonstrate a new use for multivalent Con A) and were completely dissolved after a 10 min incubation at
room temperature. Protein content was determined by measure-compounds. Multivalent ligands have been used as
ment of the absorbance at 280 nm on a Varian Cary 50 Bio UV-vishighly effective inhibitors of biological recognition
spectrometer and a 100 �l volume quartz cuvette. Measurementsevents [15, 45, 46]. Their ability to cluster proteins has
are the average of three independent experiments.

also been exploited to provide ligands that act as ef-
fectors (rather than inhibitors) of a response [47, 48]. We Fluorescence Resonance Energy Transfer
demonstrate here that, in addition to these previously Fluorescein-Con A (Vector Laboratories, Burlingame, CA) and TMR-

Con A (Sigma, St. Louis, MO) dissolved in phosphate-buffered salinerecognized uses, multivalent compounds also can serve
(PBS) (pH 7.2) were mixed to afford final concentrations of 4 �g/as templates for the formation of macromolecular as-
ml and 0.4 �g/ml, respectively. Mannose-displaying scaffold wassemblies. In this capacity, multivalent ligands can serve
added in PBS to the final concentration indicated (Figure 3), with aas vehicles for the facile aggregation of cells.
final volume of 200 �l. The reported concentration was determined

The multivalent mannose derivatives we describe here based on the total mannose residue concentration. The resulting
assemble multiple Con A tetramers through noncovalent mixtures were vortexed briefly and then incubated at room tempera-

ture for at least 15 min. The fluorescence emission intensity wasprotein-saccharide interactions. The use of synthetic
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