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The effect of varying parameters specific to laser pulse shaping instruments on resulting fidelities
for the ACNOT1, NOT2, and Hadamard2 quantum logic gates are studied for the diatomic molecule
12C16O. These parameters include varying the frequency resolution, adjusting the number of fre-
quency components and also varying the amplitude and phase at each frequency component. A time
domain analytic form of the original discretized frequency domain laser pulse function is derived,
providing a useful means to infer the resulting pulse shape through variations to the aforementioned
parameters. We show that amplitude variation at each frequency component is a crucial requirement
for optimal laser pulse shaping, whereas phase variation provides minimal contribution. We also
show that high fidelity laser pulses are dependent upon the frequency resolution and increasing the
number of frequency components provides only a small incremental improvement to quantum gate
fidelity. Analysis through use of the pulse area theorem confirms the resulting population dynamics
for one or two frequency high fidelity laser pulses and implies similar dynamics for more complex
laser pulse shapes. The ability to produce high fidelity laser pulses that provide both population
control and global phase alignment is attributed greatly to the natural evolution phase alignment of
the qubits involved within the quantum logic gate operation. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4747703]

I. INTRODUCTION

Promising experimental implementations of quantum
computing platforms, within the facet of chemistry, come
in the form of nuclear magnetic resonance (NMR)1–3 and
ion traps.4, 5 Within NMR an ensemble of molecules is ex-
cited via tuned electromagnetic pulses. Current linear ion
trap quantum computer implementations use the shaped laser
pulses to control individual atoms,6 although trapping ap-
proaches have been proposed and are currently being ex-
tended to molecules.7, 8 Instead of exciting hyperfine states
or atomic transitions, a complementary approach involves the
control of the rovibrational states of a diatomic molecule (di-
atomic quantum computing).9 In this method, a mid-infrared
laser pulse is shaped through a closed-loop feedback10–12

mechanism to represent each specific quantum gate operation,
through diatomic rovibrational state qubit excitations. Exper-
imentally, the use of internal degrees of freedom of diatomic
molecules for quantum computing has not received much at-
tention. Two possible implementations using Li2 (Ref. 13) and
I2 (Ref. 14) have been presented and neither utilized a closed-
loop feedback loop for optimization. The two experiments im-
plemented the quantum algorithms directly, termed problem-
specific quantum computing, whereas the approach of interest
in our studies is universal quantum computing, where in prin-
ciple any quantum algorithm can be implemented.13 In order
for future closed-loop feedback experiments to be realized,
further theoretical investigations on the requirements for ex-
perimental implementations will be useful.

a)E-mail: alex.brown@ualberta.ca.

The majority of theoretical studies within diatomic quan-
tum computing, using shaped laser pulses, produce excellent
qubit control but with laser pulses that are difficult, or perhaps
impossible, to realize experimentally and/or only show proof
of principle applications on a particular choice of diatomic
molecule.15–30 In contrast, we previously studied the perfor-
mance of shaped laser pulses on a general model diatomic31

and the ability to achieve high control with laser pulses having
very few parameters (binary pulse shaping).32 The theoretical
optimizing or shaping of laser pulses generally comes in two
forms: optimal control theory (OCT)33, 34 and genetic algo-
rithm (GA)11 optimization. Unless specific constraints are ap-
plied, OCT optimization can produce large intensities, a large
range of frequency components (depending on the rotational,
vibrational and/or electronic transitions available) and exper-
imentally inaccessible pulse shapes.35–37 On the other hand,
the GA can be incorporated into an experimental closed-loop
feedback setup and thus theoretical implementation allows for
an appropriate description of the possible laser pulses shapes.
While the molecular structure is clearly important,31 it is also
necessary to explore the limitations of the laser pulse shaping
apparatus within the context of this specific application.

The aforementioned experimental implementations using
Li2 and I2 had a laser pulse shaping setup that utilized a liquid
crystal spatial light modulator (LC-SLM). A transform-
limited (TL) pulse is incident upon a diffraction grating
and the LC-SLM is illuminated by the resulting frequency
spectrum. The output laser frequencies from the LC-SLM
are recombined to form the shaped laser pulse. The LC-SLM
contains a series of pixels that can independently control the
amplitude and phase at each specific frequency resolution,
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and thus provides a multitude of various laser pulse shapes.
The GA is used to determine the optimal combination of
amplitude and phase at each frequency component in order
to implement the desired quantum gate operation. We have
implemented an analogous theoretical framework, which was
also used in our previous works.31, 32

The object of the study detailed herein is to elucidate
the importance of some adjustable parameters within a typ-
ical LC-SLM, namely (i) the effect of varying the LC-SLM
pixel frequency resolution (dν), (ii) effective variance of the
amplitude (Aj), (iii) phase (φj) at each pixel, and (iv) the ef-
fect of changing the number of pixels (n) included within the
laser pulse shaping. Each of these four important parameters
affects the total number of laser pulse combinations and thus
the total size of the parameter space that needs to be explored
to find the optimal laser pulse. It is important to have a pa-
rameter space of minimal size such that the GA can locate
the optimal laser pulse with confidence and within an appro-
priate amount of computational time. A minimum parameter
space requires a balance between the number of pulse shaping
parameters and a maximum laser pulse fidelity, and hence the
current study. In the present work, laser pulses are optimized
to represent three common quantum gates (ACNOT1, NOT2,
Had2) on the rovibrational state qubits of carbon monoxide
(12C16O). Building from our31 and others18 previous work us-
ing GA laser pulse optimization on CO, we demonstrate the
effect of laser pulse shaping parameters on the ability to pro-
duce optimal laser pulses.

II. THEORY

The time-dependent Schrödinger equation (TDSE) can
be written in matrix notation with time-dependent coefficients
cνJ(t):

ċ(t) = − i

¯

[
E − ε(t)μ

]
c(t). (1)

In Eq. (1), c(t) is the column vector of time-dependent
rovibrational state coefficients, E is the rovibrational state
energy matrix, ε(t) is the linearly polarized electric field of
the laser pulse and μ is the rovibrational transition dipole

matrix. The TDSE is solved using the Runge-Kutta fourth
order method with 220-222 time points depending on the pulse
duration. The number of time points chosen is determined by
an incremental change until a convergence threshold is met,
based upon the total population after pulse interaction. There
is a tradeoff between the selected convergence threshold and
the computational time required for each calculation.

A. Model system

We restrict our study to the diatomic carbon monox-
ide (12C16O) with excitations occurring between rovibrational
states according to vibrational excitation �ν = ±1 and rota-
tional excitation �J = ±1. The CO model consists of 7 vibra-
tional states (0 ≤ ν ≤ 6) each with 9 rotational states (0 ≤ J
≤ 8) for a total of 63 rovibrational states. With the energy con-
tained in the laser pulses being optimized, rovibrational states
higher than those used in the study were insignificantly pop-

(40)

(00)

(30)

(20)

(10)

(42)

(02)

(32)

(22)

(12)

(41)

(01)

(31)

(21)

(11)

(43)

(03)

(33)

(23)

(13)

(44)

(04)

(34)

(24)

(14)
2139

21
21

2087

20
68

2132

21
28

2079

20
75

2109

2057

20
98

21
51

2101

2049

21
05

21
58

|00〉

|01〉

|10〉

|11〉

FIG. 1. Illustration of the first 12 accessible rovibrational states (shaded light
blue boxes) of 12C16O labeled as (ν J). The chosen qubit representations
(shaded dark blue boxes) are labeled as |q1q2〉. Available transitions are gov-
erned by the following simultaneous vibrational and rotational transitions:
�ν = ±1 and �J = ±1 which are illustrated by states connected along a
diagonal. Some rovibrational states are inaccessible (white boxes). Excita-
tion frequencies (red text) are in cm−1 and lie between the accessible rovi-
brational states. The qubits (|00〉,|01〉,|10〉,|11〉) that undergo a state change
(black arrows) during an applied quantum gate operation, according to
Table I, are labeled by the corresponding gate. Notice that the NOT and
Hadamard gates require simultaneous control of 2 transitions. Reprinted with
permission from R. R. Zaari and A. Brown, J. Chem. Phys. 132, 014307
(2010). Copyright 2010, American Institute of Physics.

ulated and thus the reduced set used in this study is adequate.
The four rovibrational states (ν,J) used to represent the qubits
|q1q2〉 are |00〉 ≡ (1,2), |01〉 ≡ (0,1), |10〉 ≡ (2,1), and |11〉
≡ (1,0). Refer to Figure 1 for a detailed illustration contain-
ing the qubits, rovibrational states, and transition frequencies
involved. The rovibrational state energies were determined
by Mantz et al.38 by fitting of experimental measurements
of 1514 vibration-rotation and pure rotation transitions to a
power series of vibrational and rotational quantum numbers -
the energies fit both high ν (ν ≤ 37) and high J (J ≤ 100)
data within experimental uncertainty. The transition dipole
moments were taken from the work of Goorvitch and
Chackerian39 in which experimental data was fit to a poly-
nomial in terms of the angular quantum number.

B. Quantum logic gates

In the present study three quantum logic gates were stud-
ied: the alternative controlled-NOT (ACNOT1) gate, NOT2

gate, and Hadamard 2 (Had2) gate. The qubit operations for
each gate are depicted in Table I. The subscript “1” of the
ACNOT1 gate is used to denote the control qubit, here q1, and
subsequent flip of the target qubit q2 when q1= 0. In the case
of the NOT2 and Had2 gates, the subscript “2” simply denotes
a flip of qubit 2 (q2). Laser pulses are to be shaped in or-
der to implement the state transformations required for each
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TABLE I. Quantum gate operations which are implemented by an opti-
mized laser pulse in this study with qubit representation |q1q2〉. NOT2/ Had2:
The qubit flip occurs on qubit 2 (q2). ACNOT1: The control qubit is q1 and
the qubit flip occurs on the target qubit q2 when q1 = 0.

ACNOT1 : |10〉 → |10〉 NOT2 : |00〉 ↔ |01〉
|11〉 → |11〉 |10〉 ↔ |11〉
|00〉 ↔ |01〉

Had2 : |00〉 ↔ 1√
2

(|00〉 + |01〉)
|01〉 ↔ 1√

2
(|00〉 − |01〉)

|10〉 ↔ 1√
2

(|10〉 + |11〉)
|11〉 ↔ 1√

2
(|10〉 − |11〉)

quantum gate operation. Thus each quantum gate operation
will have a unique laser pulse and each laser pulse will have
an associated value describing its ability to perform the quan-
tum gate operation, termed the fidelity (see Sec. II C).

C. Laser pulse optimization

The present study investigates features of experimental
pulse shaping using a LC-SLM where shaping occurs in the
frequency domain. The LC-SLM produces a discretized fre-
quency spectrum, ε(ν j), given by

ε(νj ) = ε0

√
A(νj ) exp

[
−2 ln 2

(
νj − ν0

�ν

)2
]

exp[iφ(νj )],

(2)
where ε0 is the peak field strength, ν0 is the central frequency,
�ν = 100 cm−1 is the full width at half-maximum pulse width
and ν j represents the discrete frequencies at which the field is
shaped. The amplitude and phase range from 0 ≤ A(ν j) ≤ 1
and 0 ≤ φ(ν j) ≤ 2π , respectively. Variation in amplitude or
phase is accomplished by dividing up the respective ranges of
each parameter by a select n number of segments. The nota-
tion used to describe the number of segment divisions is for
amplitude nA variations and for phase nφ variations. In the
case of binary pulse shaping (a choice of 2A and 2φ), A =
0 or 1 and φ = 0 or π . A transform limited (TL) pulse re-
sults when A = 1 and φ = 0 for all frequency components,
ν j, of Eq. (2). Typically, in order to obtain the time-domain
laser pulse from this frequency domain spectrum, a Fourier
transform is used. An analytic form for the time-domain laser
pulse, ε(t), has been derived from the discretized frequency
spectrum, ε(ν j) (see the Appendix),

ε(t) = sinc (πtdν)
n∑

j=0

A′
j cos(2πνj t + φj ), (3)

where A′
j = dνε0

√
Aje

−2 ln 2
(

νj −ν0
�ν

)2

and contains variables as
described in Eq. (2). The frequency resolution is labeled by
dν and the summation occurs over n discretized frequency
components. The symmetry of resulting laser pulses can be
deduced using Eq. (3). The sinc function is symmetric along
the pulse duration from − T

2 ≤ t ≤ T
2 . As long as the phase

at each frequency component (φj) of the cosine function
varies only by φ = 0 or φ = π , where cos (2πν jt + π )
= −cos (2πν jt), then overall the resulting laser pulse shapes

(a)
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1 1
2 2

22

3 3

33

FIG. 2. Illustration of the incremental addition of frequency components for
the ACNOT1, NOT2, and Had2 gates. (a) ACNOT1 gate. One frequency com-
ponent at “1,” the central frequency ν0. Three frequency components at “1”
and “2.” Five frequency components at “1,” “2,” and “3.” Seven frequency
components at “1,” “2,” “3,” and “4.” The addition of more frequency com-
ponents continues in this manner. (b) NOT2 and Had2 gates. Two frequency
components at “1,” with the transition frequencies ν1, ν2. Six frequency com-
ponents at “1” and “2.” Ten frequency components at “1,” “2,” and “3.” The
addition of more frequency components continues in this manner.

will be symmetric in time. Moreover, a symmetric pulse shape
guarantees that the resulting phases of the set of two qubit
transitions of the quantum gate operation will be the same. For
example, a symmetric laser pulse being shaped to represent
the ACNOT1 gate will result in the qubits |00〉 and |01〉 being
in phase. This effect of temporally symmetric laser pulses was
originally documented by Schröder and Brown.36

The ACNOT1 gate requires only one frequency for the
state-to-state transition between |00〉 and |01〉, as shown in
Table I. This frequency for 12C16O is ν0 = 2151 cm−1 and
also corresponds to the central frequency of the Gaussian en-
velope used for laser pulse shaping of the ACNOT1 gate.
The NOT2 and Had2 gates require two frequencies for each
of the state-to-state transitions between |00〉 and |01〉, and
|10〉 and |11〉. These frequencies are at ν2 = 2151 cm−1

and ν1 = 2121 cm−1, respectively. The central frequency of
the Gaussian envelope spanning these two frequencies is ν0

= 2136 cm−1 and corresponds to the average between the
two transitions involved in the NOT2 or Had2 gate opera-
tions. The relative positioning of these frequencies is illus-
trated in Figure 2. Note that the central frequency used for the
ACNOT1 gate is different than that used for the NOT2 and
Had2 gates. Also shown in the figure is the method by which
additional frequencies are added to the laser pulse shaper
for the ACNOT1 gate (Figure 2(a)) and for the NOT2 and
Had2 gates (Figure 2(b)). Additional frequency components
are added on either side of the transition frequencies involved
in the qubit excitations.

With reference to Eq. (3) the variables we are manip-
ulating within this study are Aj (amplitude), φj (phase), n
(number of frequency components), and dν (frequency res-
olution). These four parameters will produce different laser
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pulse shapes and thus different rovibrational state qubit dy-
namics. In order to optimize a pulse shape for performing a
particular quantum gate operation, a GA is utilized.40 The
GA uses evolutionary strategies from biology such as natu-
ral selection and survival of the fittest to search the parameter
space of possible laser pulse shapes and find the appropri-
ate one, without having to sample all combinations. In the re-
sults reported here, we use between 25 and 1000 generations
each consisting of 16 individuals and a micro-GA subroutine.
The micro-GA eliminates inbreeding, which is the case when
individual laser pulses become too similar, by keeping the
best individual and randomly selecting 15 new individuals to
create a new generation. The chosen number of generations
was determined based upon the relative size of the param-
eter space. For example, the ACNOT1 gate with a parameter
space consisting of a single frequency component (n = 1) with
16 amplitude (16A) and 2 phase (2φ) choices would consist
of (16 × 2)1 = 32 possible laser pulse combinations. If the
same quantum gate had a parameter space consisting of 13
frequency components (n = 13), 32A, and 2φ, then it would
produce (32 × 2)13 = 3.02 × 1023 laser pulse combinations!
A large number of generations would be required for the lat-
ter case to ensure appropriate sampling of the parameter space
and to ensure confidence of the optimal solution being found.

In order for the GA to know how well an individual (laser
pulse) performs the desired quantum gate operation, a fitness
function is needed. The form of the fitness function, in this
case termed the fidelity (F), used in the present work is

F = 1

N2

∣∣∣∣∣
N∑

k=1

〈�k(T )|�k〉
∣∣∣∣∣
2

, (4)

where �k(T) is the resulting wavefunction after the laser pulse
has been applied, T is the total laser pulse duration, and �k

is the target wavefunction. The wavefunctions are summed
over the number of transitions required by the quantum gate,
N = 4 here, and then divided by a normalization factor, N2,
to ensure the fidelity ranges between 0 and 1. The fidelity is
dependent upon the phase alignment of all the qubits, which
can be explicitly viewed in an alternative representation of the
fidelity,

F = 1

N2

⎡
⎣ N∑

k

|rk|2 + 2
N∑

k 
=k′
rkrk′ cos(�φkk′)

⎤
⎦ . (5)

For simplicity, the time-dependent wavefunctions (Eq. (4);
�k(T), �k) are written in complex Euler notation, i.e., �k

= rke
iφk and �k are assumed to be real. The term rk describes

the magnitude of the time-dependent coefficients correspond-
ing to wavefunctions �k at the end of the laser pulse interac-
tion. �φkk′ is the difference between qubit phases, φk and φk′ ,
at the end of the laser pulse duration.

Another description of the dynamics occurring during the
laser pulse/molecule interaction, but not used as a means for
optimization, is the average population, P̄ ,

P̄ = 1

N

N∑
k=1

|〈�k(T )|�k〉|2 . (6)

The average population (P̄ ) describes the ability of the
laser pulse to excite from an initial state to a final state as
deemed by the quantum gate operation. The average popula-
tion is not dependent upon the final phase of the qubits. A re-
quirement of molecular quantum computing is global phase
alignment.27, 41 The final phases of each qubit after the total
pulse interaction time must be the same. This ensures that
the application of subsequent quantum gate operations (laser
pulses) occurs without inducing a phase discrepancy and thus
decreasing the effectiveness of the quantum gate. Hence, the
fidelity is used as the fitness function for GA optimizations
rather than the average population (P̄ ). Global phase align-
ment is related to the second term of Eq. (5).

III. RESULTS AND DISCUSSION

This investigation was carried out in three parts in or-
der to examine the effects on fidelity of variations to ampli-
tude (Aj), phase (φj), number of frequency components (n),
and frequency resolution (dν) or synonymously total pulse
duration (T). Each has a particular role in producing an op-
timal pulse shape based upon the experimental discretized
pulse shaping LC-SLM. The variations to the laser pulse shap-
ing parameters were carried out on the ACNOT1, NOT2, and
Had2 quantum logic gates and their effects on the resulting
quantum logic gate Fidelity (F) were evaluated. The three sec-
tions are as follows:

A. Effect of total pulse duration (F vs. T)
At a constant total pulse energy, the total pulse duration,
T, was varied. The total pulse energy for each quantum
gate was taken from our previous work.32 The frequency
resolution (dν) and total pulse duration (T) are related by
dν = 2

T
. As a result, a qualitative relationship between

the total pulse duration, T and areas of high and low fi-
delity can be deduced. The laser pulse included only the
single transition frequency (ACNOT1) or only two fre-
quencies (NOT2 and Had2), depending upon the quan-
tum gate. Binary pulse shaping (A = 0 or 1, φ = 0 or π )
was utilized.

B. Effect of laser pulse energy (F vs. A)
The low fidelities obtained in Sec. III A, as detailed
in the paragraph above, may be associated with pulse
shapes of non-optimal total pulse energy. By deter-
mining optimal amplitudes at the excitation frequency
(see Figure 2(a); ν0) or frequencies (see Figure 2(b);
ν1, ν2), the appropriate pulse shape of optimal energy
can be generated. At specifically chosen values of total
pulse duration, T, the number of amplitude components
was varied beyond two choices (the phase variation re-
mained at 2φ), from 2A until appropriate convergence
was reached at 512A. Thus, the total pulse energy avail-
able to all frequency components can be controlled at
each frequency component by amplitude variation.

C. Effect of frequency resolution, amplitude, and phase
(F vs. n, A, φ)
Finally, in order to further investigate the effect of laser
pulse parameters on increasing the resulting fidelity,
the number of frequency components (n) was increased
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beyond the excitation frequency, ν0 (see Figure 2(a)) or
frequencies, ν1 and ν2 (see Figure 2(b)). Concurrently,
the number of amplitude (A) or phase (φ) values was in-
creased from only two choices to having 32 choices each
(i.e., 32A or 32φ). This investigation was carried out on
the pulses of optimal energy, as determined in Sec. III B
and detailed in the previous paragraph, of a single cho-
sen total pulse duration for each quantum gate operation.

A. Effect of total pulse duration (F vs. T)

In order to examine the effect of the total pulse duration
on the fidelity, a scan of the frequency resolution (dν) was
carried out by setting the total frequency window to 500 cm−1

and discretizing the window into odd integer values (x) for
dν = 500

x−1 but there was no direct optimization. Thus, the
total pulse duration (T) at intervals of �T = 0.27 ps for
5.34 ps ≤ T ≤ 66.71 ps was sampled. The laser pulse energies
for each quantum gate were constant and chosen based upon
the TL-pulse energies from our previous work.32 For these
simulations, laser pulses were constructed from all combina-
tions of amplitude and phase from A = 0 or 1 and φ = 0 or
π for each quantum gate. The fidelity for each laser pulse at
each value of dν was calculated and then dν was converted
to the corresponding value for the total pulse duration. From
this point on, references to the total pulse duration T should be
considered synonymous to the frequency resolution dν. The
field free case, for the NOT2 and Had2 gates when ε(t) = 0,
is omitted since it produces a fidelity of zero due to the nature
of the excitations involved (see Table I). In comparison, the
ACNOT1 gate when ε(t) = 0 produces a maximum fidelity of
F = 0.25. Similar information about the relationship between
the fidelity and total pulse duration could be determined ex-
perimentally by scanning through values of dν and optimizing
a laser pulse for each value when A = 0 or 1 and φ = 0 or π .

1. ACNOT1 quantum gate

The total pulse energy was kept constant at E = 10 μJ
and the central frequency is ν0 = 2151 cm−1. Three unique
laser pulses at each pulse duration T can be produced. Us-
ing the notation [A,φ], they are [1,π ], [1, 0], and the field
free case [0, φ]. The fidelities for these three pulses as a
function of pulse duration are shown in Figure 3. As seen in
Figure 3, there are six locations where the fidelity is highest,
though the pattern may repeat itself in time. The two laser
pulses, [1, π ] and [1, 0], share a relationship such that the
maximum fidelity alternates between each other as T is in-
creased (see the inset of Figure 3), where the fidelities from
6.5 ps ≤ T ≤ 8.8 ps are plotted. The overall pattern of max-
imum fidelities produced by [1,π ] and [1, 0] follows the
trend of fidelity for the field free scenario (solid blue line),
though not all cases result in a global maximum fidelity (e.g.,
T = 22.7 ps and 45.1 ps). When ε(t) = 0 in the field free
case (Figure 3; solid blue line) the excitation |00〉↔|01〉 can-
not occur and thus the fidelity represents the phase alignment
of qubits |11〉 and |10〉. It seems that the free evolution phase
alignment of qubits |11〉 and |10〉 determines whether a high
fidelity can be obtained for a specific value of dν. The excep-
tion being the unexpectedly low fidelities at T = 22.7 ps and
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FIG. 3. Plot of the resulting fidelities for three pulse shapes as a function
of the total pulse duration T for the ACNOT1 quantum gate having a total
pulse energy of 10 μJ. The laser pulses, consist of 1 frequency component
(n = 1) at the transition frequency (2151 cm−1) with a choice of amplitude
2A and phase 2φ using the notation [Aφ], are [1,π ] black line, [1, 0] red line,
and [0,0] blue line. The inset shows the alternating fidelity between [1,π ] and
[1, 0] for 6.5 ps ≤ T≤ 8.8 ps.

45.1 ps. Analysis of the results for these two low fidelity local
maxima is detailed in Sec. III B.

The fidelity of the free evolution of qubits |10〉, and
|11〉 is described by, F = 1

16 [2 + 2 cos(�|11〉 − �|10〉)], where
�|q1q2〉 is the final phase for qubit |q1q2〉 after the pulse inter-
action. As seen in Figure 3, the maximum fidelity (peaks) oc-
cur at intervals every T = 7.526 ps. The free evolution align-
ment between qubits |10〉 and |11〉 is related to the energy
difference between these states and occurs at a frequency of
2121 cm−1 (63.57 ps−1). This is much larger than the peak os-
cillation period of 1

7.526 = 0.1329 ps−1 just stated. However,
the period observed in Figure 3 is simply a result of the pulse
duration (frequency resolution) sampling used in the present
work. When the free evolution frequency of these qubits is
sampled at the pulse duration interval used in these calcula-
tions (�T = 0.267 ps), the fidelity curve produced exactly
overlaps with that of the solid blue line of Figure 3.

2. NOT2 quantum gate

The total pulse energy was kept constant at E = 20
μJ and with n = 2 the two transition frequencies were ν1

= 2121 cm−1 and ν2 = 2151 cm−1, with the central frequency
being ν0 = 2136 cm−1. Binary laser pulses (2A/2φ) were im-
plemented. Using the notation [A1φ1, A2φ2], with subscripts
referring to either transition frequency, a total of (2 × 2)2 = 16
laser pulse combinations result. Only 9 of the combinations
are unique and one of the nine combinations is the field free
case; thus only 8 combinations were calculated. The resulting
fidelities for the 8 unique laser pulse combinations for each
value of T are shown in Figure 4. It is important to note that
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FIG. 4. Plot of the resulting fidelities for eight pulse shapes (only 4 are
unique) as a function of the total pulse duration T for the NOT2 quantum gate
having a total pulse energy of 20 μJ. The laser pulses, consisting of two fre-
quency components (n = 2) at the transition frequencies (ν1 = 2121 cm−1,ν2
= 2151 cm−1) with binary pulse shaping (2A/2φ) using the notation [A1φ1,
A2φ2], are [1π , 1π ] = [10, 10] red line, [10, 1π ] = [1π , 10] green line,
[1π , 00] = [10, 00] blue line, and [00, 1π ] = [00, 10] orange line.

the plots in Figure 4 have considerably lower fidelities due
to inappropriate choice of total laser pulse energy and insuf-
ficient amplitude variation beyond 2 amplitude components
(2A). Some of the laser pulse combinations produce iden-
tical dynamics in Figure 4, namely, F[1π , 1π] = F[10, 10] (red
line), F[10, 1π] = F[1π , 10] (green line), F[1π , 00] = F[10, 00] (blue
line), and F[00, 1π] = F[00, 10] (orange line). The red, green, and
orange lines in Figure 4 seem to oscillate at approximately
the same frequency while the blue line seems to be cen-
tered at their minima but with a much lower fidelity. Finally,
Sec. III B will show that high fidelity points do not necessarily
mean 100% fidelity points.

3. Had2 quantum gate

The total pulse energy was kept constant at E = 25 μJ.
Similarly to the NOT2 gate, there are only 8 unique laser pulse
combinations using 2 frequency components ν1 = 2121 cm−1

and ν2 = 2151 cm−1, centered at ν0 = 2136 cm−1. The results
are shown in Figure 5. We refer the reader to the ACNOT1 re-
sults shown in the inset of Figure 3, illustrating the fluctuating
fidelities between pulse shapes differing in phase by π . Sim-
ilar fidelity trends are observed for the results from specific
laser pulse amplitude and phase combinations for the Had2

quantum gate. Fidelity results of all pulse combinations for
ACNOT1 are plotted in Figure 3. However, in the case of Fig-
ure 5 for the Had2 gate, in order to simplify the figure the fluc-
tuations are not shown. Only the maximum fidelities between
the following combinations are plotted, namely [1π ,1π ] and
[10, 10] (red line), [10,1π ] and [1π ,10] (green line), [1π ,00]
and [10, 00] (blue line), and [00,1π ] and [00, 10] (orange
line). The black line of Figure 5(e) displays the maximum fi-
delity between either four possible values of Figs. 5(a)–5(d),
at any given total pulse duration. The curves are more com-
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FIG. 5. Plot of the resulting maximum fidelities for 8 pulse shapes as a func-
tion of the total pulse duration T for the Had2 quantum gate having a total
pulse energy of 25 μJ. The laser pulses, consist of 2 frequency components
(n = 2) at the transition frequencies (ν1 = 2121 cm−1, ν2 = 2151 cm−1)
with binary pulse shaping (2A/2φ) using the notation [A1φ1,A2φ2], are (a)
[1π ,1π ] and [10, 10] red line, (b) [10,1π ] and [1π ,10] green line, (c) [1π ,00]
and [10, 00] blue line, and (d) [00,1π ] and [00, 10] orange line. Also plot-
ted, in black within (e), are the maximum results from the previous plots of
(a)–(d), at any given total pulse duration.

plicated than those obtained for the ACNOT1 or NOT2 gates,
likely due to the required superposition of states of the Had2

gate. In this case there is no regular pattern, making it diffi-
cult to deduce a predictable value of T that will result in a high
fidelity.

B. Effect of laser pulse energy (F vs. A)

As a first attempt to improve upon the fidelity, the op-
timal laser pulse energy was determined at select total pulse
durations, T. These calculations could have been done for ev-
ery value of T in Sec. III A and would have provided a more
complete picture but the optimization time requirements lim-
ited this. Using n = 1 for the ACNOT1 gate or n = 2 for
the NOT2 and Had2 gates, we varied the amplitude from 2A
choices of amplitude, up to a maximum of 512A amplitude
choices, while restricting the phase to 2φ choices, φ = 0 or
π . For example, the designation 512A can be thought of as
dividing up the amplitude, at each frequency discretization,
into a maximum of 512 segments. Moreover, by varying the
amplitude what is actually being optimized is the energy asso-
ciated with each frequency component used in the calculation.
Thus, the actual laser pulse energy reported will be much less
than the total pulse energy since only a small fraction of the
total pulse energy is carried in the discretized frequency com-
ponent(s) used here. The laser pulse energy was increased to
a value larger than used in Sec. III A, in order to allow more
flexibility in the choice of energy. For the ACNOT1 gate an
energy of 30 μJ was used. For the NOT2 and Had2 gates, since
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TABLE II. Comparison of resulting fidelities, pulse energies, and ampli-
tudes for laser pulses optimized for the ACNOT1 gate with and without (op-
timal) amplitude restrictions. The amplitude used in Figure 3 is A = 1.00 and
the total pulse energy was 30 μJ.

Total pulse Figure 3 Optimal Figure 3 Optimal Optimal
duration fidelity fidelity pulse energy pulse energy amplitude
T (ps) F F E (μJ) E (μJ) A

7.47 0.9747 0.9748 0.8388 0.8519 0.339
11.20 0.2712 0.2715 0.5592 0.5351 0.319
22.68 0.5049 0.5058 0.2763 0.2953 0.356
45.10 0.5660 0.5680 0.1390 0.1248 0.299

two frequencies are needed that are not at the central peak in-
tensity (see Figure 2), a value of 100 μJ is used. In general,
optimizing the energy did not change the relative relationship
between low and high fidelity points in Figs. 3–5.

1. ACNOT1 quantum gate

Values for the total pulse duration associated with high
and low fidelities were chosen from Figure 3, namely, 7.47
ps, 11.20 ps, 22.68 ps, and 45.10 ps. The results comparing
a total laser pulse energy of 10 μJ with an optimized laser
pulse energy chosen from a total pulse energy of E = 30 μJ
for 512A, are displayed in Table II. In this case the chosen
value of E = 10 μJ for all 4 cases, when using 2A and 2φ

components, was able to produce the required optimal pulse
energy. With a choice of 7.47 ps pulse duration and using only
one frequency component at the transition frequency, a 30 μJ
total laser pulse energy could produce a high fidelity (here F
= 0.9748) when using 512A amplitude variations.

The pulse durations 22.68 ps and 45.10 ps correspond
to local maxima of Figure 3. Analysis of the fidelity at these
two points indicate that there is poor phase alignment between
the qubits. For example, the optimal laser pulse in Table II at
45.10 ps produces resultant qubit phases of: �|00〉 = −1.50
rad, �|01〉= −1.50 rad, �|10〉 = −0.09 rad, and �|11〉 = −0.04
rad. It is this lack of phase alignment that produces the unex-
pectedly low fidelity at T = 22.68 ps and 45.10 ps. In com-
parison, analogous data for the high fidelity pulse duration T
= 7.47 ps is �|00〉 = −1.99 rad, �|01〉 = −1.99 rad, �|10〉 =
−2.33 rad, and �|11〉 = −2.25 rad. The resulting phases of the
qubits involved in the transition, |00〉 and |01〉, are the same
because the laser pulse is symmetric (see Sec. II C).

2. NOT2 quantum gate

Values for the total pulse duration at four high fidelity
points 8.27 ps, 35.22 ps, 44.03 ps, 52.84 ps, and one low
fidelity point 15.21 ps were chosen from Figure 4. The re-
sults comparing a constant laser pulse energy of 20 μJ for 2A
amplitude variations with an optimized laser pulse energy at
a maximum E = 100 μJ for 512A amplitude variations, are
displayed in Table III. The initial choice of E = 20 μJ with
2A amplitude variations produces very low fidelities (Table
III; Figure 3 fidelity). Once the amplitudes were given more
variation (512A) under a larger energy window (100 μJ), the
fidelities increased dramatically (Table III; Optimal fidelity).

TABLE III. Comparison of resulting fidelities, pulse energies, and ampli-
tudes for laser pulses optimized for the NOT2 gate with and without (optimal)
amplitude restrictions. The amplitudes, A1/A2, for Figure 4 are 1.00/1.00 and
the total pulse energy was 100 μJ.

Total pulse Figure 4 Optimal Figure 4 Optimal Optimal
duration fidelity fidelity pulse energy pulse energy amplitudes
T(ps) F F E(μJ) E (μJ) A1/A2

8.27 0.2085 0.7461 2.820 7.297 0.035/1.00
15.21 0.0414 0.4256 1.571 5.203 0.376/0.949
35.22 0.1629 0.7372 0.668 1.679 0.049/0.957
44.03 0.1675 0.9994 0.534 1.281 0.051/0.908
52.84 0.1641 0.8459 0.445 0.621 0.458/0.010

Larger pulse energies were required in order to obtain larger
fidelities. According to Table III, a low amplitude at one of the
two frequencies and a high amplitude at the other is needed to
achieve optimal fidelities at a given value of T, for n = 2. For
example optimizing the laser pulse energy for a total pulse
duration of T = 8.27 ps, results in an optimal amplitude of
A1 = 0.035 and A2 = 1.00 for ν1 and ν2, respectively. With
reference to Eq. (3), the laser pulse with a frequency of ν1 =
2121 cm−1 has a low amplitude A1 than the ν2 = 2151 cm−1

laser pulse with A2 = 1.00. These choices of amplitudes re-
sult in high fidelities which would not have been achieved
by a constant laser pulse energy with binary pulse shaping
(Figure 4).

3. Had2 quantum gate

For the case of the ACNOT1 and NOT2 quantum gates,
the choice of T at high and low fidelity points from Figure 3
or Figure 4 lead to a fairly simple regular structure. The anal-
ogous plot for the Had2 gate (Figure 5) is very complex in
structure, exhibiting no signs of a regular pattern. Only two to-
tal pulse durations with high fidelity points were studied from
Figure 5, namely, 24.28 ps and 48.30 ps. The results compar-
ing a constant laser pulse energy of 25 μJ with an optimized
laser pulse energy at a maximum energy of 100 μJ for 512A
amplitude variations, are displayed in Table IV. The constant
25 μJ laser pulse energy was not optimal, as seen by the large
discrepancy between the fidelities. The fidelity can be sig-
nificantly improved by changing the pulse energy, e.g., the
laser pulse optimized at T = 48.30 ps attains a large fidelity
(F = 0.9742). The choice of optimal amplitudes is different in
this case than for the NOT2 gate since A1 and A2 are of similar
magnitudes.

TABLE IV. Comparison of resulting fidelities, pulse energies, and ampli-
tudes for laser pulses optimized for the Had2 gate with and without (optimal)
amplitude restrictions. The amplitudes, A1/A2, for Figure 5 are 1.00/1.00 and
the total pulse energy was 30 μJ.

Total pulse Figure 5 Optimal Figure 5 Optimal Optimal
duration fidelity fidelity pulse energy pulse energy amplitudes
T(ps) F F E (μJ) E (μJ) A1/A2

24.28 0.6810 0.8817 1.197 1.199 0.344/0.157
48.30 0.8791 0.9742 0.609 0.660 0.315/0.227
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TABLE V. Results of amplitude (A), phase (φ), and number of frequency components (n) variation at select
pulse durations from Sec. III B for the ACNOT1, NOT2, and Had2 quantum gates. Also included are results from
full calculations (full) in which the amplitude at each frequency was flexible to vary by 32 segments between 0 ≤
A ≤ 1.

ACNOT1 NOT2 Had2

T = 7.47 T = 52.84 T = 24.28
A1 = 0.339 A1/A2 = 0.458/0.010 A1/A2 = 0.344/0.157

n A/φ Fidelity Avg. pop. Fidelity Avg. pop. Fidelity Avg. pop.

1 or 2 2A/2φ 0.9748 0.9983 0.8459 0.9955 0.8817 0.9068
2A/32φ 0.9748 0.9983 0.8459 0.9955 0.8817 0.9068

13 or 10 2A/2φ 0.9876 0.9947 0.8921 0.9427 0.8817 0.9068
32A/2φ 0.9912 0.9956 0.9123 0.9726 0.9834 0.9873
2A/32φ 0.9880 0.9949 0.9067 0.9683 0.8817 0.9068

Full 13 or 10 32A/2φ 0.9927 0.9948 0.9638 0.9875 0.9840 0.9847

C. Effect of number of frequency components,
amplitude, and phase (F vs. n, A, φ)

From Secs. III A and III B, it is clear that the overall quan-
tum gate fidelity is strongly dictated by the one (ACNOT1) or
two (NOT2 and Had2) transition frequency components. Here
we want to consider what role additional frequency compo-
nents play in determining the overall fidelity and subsequent
amplitude and phase variation on these additional frequencies.
In order to do so, one of the values of the total pulse duration
(T) from Sec. III B for each quantum logic gate must be se-
lected. The optimal amplitude(s) determined for this choice
of pulse duration are then used as the maximum values in-
stead of the default of 1.00. The result is an optimal ampli-
tude (energy) at each transition frequency from which to vary
the amplitude (A) and/or phase (φ) for increasing number of
frequency components (n). For the ACNOT1 gate the number
of frequency components varies by odd integer values accord-
ing to 1 ≤ n ≤ 13, so that frequency components are added
to either side of the transition frequency. The NOT2 and Had2

gates vary by n = 2, 6, and 10, so that frequency components
are added to either side of both transition frequencies (see
Sec. II C and Figure 2). Combinations of 2A or 32A and 2φ

or 32φ for each number of frequency components were used
to test the effect of increased amplitude or phase variation on
the optimal fidelity. Also an optimization in which the energy
had 32A amplitude variations and the phase with 2φ variation
at each value of n = 10 or 13 frequency components was used
as a comparison—here termed the full optimization. In this
full optimization there was no determined optimal amplitude
and the default maximum amplitude (A = 1.00) was used for
all frequencies, thus giving more flexibility for the allowed
energies. This is analogous to the energy optimization of
Sec. III B, except in this case n = 10 or n = 13 and results in
a very large parameter space optimization. The results for the
minimum and maximum number of frequency components
studied are shown in Table V. In our previous study, we also
produced GA optimized laser pulses for the ACNOT1, NOT2,
and Had2 gates but using binary pulse shaping for n = 51 fre-
quency components at T = 6.67 ps.32 Fidelities of FACNOT1=
0.9729, FNOT2 = 0.5118, and FHad2 = 0.5075 were obtained
using a total pulse energy of 10 μJ, 20 μJ, and 25 μJ, respec-
tively.

1. Effect of amplitude - A

As was shown in Sec. III B, the use of amplitude variance
allowed for laser pulse energy optimization. This produced a
very large increase in the fidelity, in many instances. When
32A/2φ with n = 13 was used, the fidelity for the ACNOT1

gate rose subtly from 0.9876 (2A/2φ) up to F = 0.9912. In
the case of the Had2 gate with 2A/2φ, restricting the maxi-
mum amplitudes to A1= 0.344 and A2 = 0.157 limited the
fidelity from increasing (constant F = 0.8817) even when the
number of frequency components was increased to n = 13.
When either n = 2 or when n = 13, the same laser pulse
shape, consisting of only the transition frequencies, was cho-
sen. Giving flexibility to the amplitudes (32A/2φ, n = 13) of
the Had2 gate allowed the fidelity to increase to 0.9834, which
is very close to the full optimization fidelity of 0.9840. For the
NOT2 gate with n = 13 using 32A/2φ, the fidelity of the opti-
mal laser pulse, F = 0.9132, is significantly less than the full
optimization of 0.9638. In this case there are energies at spe-
cific frequencies that are greater than the maximum allowed
by the amplitude restriction of A1 = 0.458 or A2 = 0.010. In-
creasing the amplitude variance while using these maximum
values will not improve the fidelity to that of the full optimiza-
tion value.

2. Effect of phase - φ

The increase of phase, beyond φ = 0 or π , to 32φ has
minimal effect (increase of 1.5%) or no effect on increasing
the fidelity. The necessary phase condition is that the param-
eter space at least consists of φ = 0 to produce positive am-
plitudes and φ = π in order to produce negative amplitudes
(see Eq. (3)). An optimization for the ACNOT1 gate with n
= 13 using 2A/2φ produces F = 0.9876, while a choice of
2A/32φ gives a minor increase to F = 0.9880. The popula-
tion transfers between the qubits for both cases are shown in
Figure 6, along with the amplitude and phase sequence at ν0

= 2151 cm−1.

3. Effect of number of frequency components - n

The effect of adding additional frequency components is
dependent upon the ability for the amplitude and/or phase to
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FIG. 6. Plot of the population dynamics between qubits for the ACNOT1
gate using n = 13 frequency components with a total pulse energy of 30
μJ for 2A/2φ (solid line) and for 2A/32φ (dotted line). (a) |00〉 → |01〉, (b)
|01〉 → |00〉, (c) |10〉 → |10〉, and (d)|11〉 → |11〉. Black: |00〉, red: |01〉,
green: |10〉, and blue: |11〉. The sequence of laser pulse amplitudes and phases
[A1φ1, ...,A13φ13], with a central frequency of ν0 = 2151 cm−1, that produce
the solid lines are [00,00,00,00,00,00,0.339 π ,00,00,0.339 0, 0.339 π ,0.339
π ,0.339 π ] and the dotted lines are [00,00,00,00,00,00,0.339 π ,00,00,0.339
1
2 π , 0.339 19

16 π ,0.339 π
2 ,0.339 31

16 π ].

increase the fidelity. The addition of further frequency com-
ponents beyond the transition frequency/frequencies causes
a small increase in fidelity; the majority of the fidelity com-
ing from the transition frequency/frequencies themselves. The
former statement occurs for the Had2 gate in which the fi-
delity has reached a maximum of 0.8817 and no further in-
crease is accomplished by increasing the number of frequency
components. The fidelity increases to 0.9834 once the am-
plitudes are allowed more flexibility by using 32A amplitude
variations. The latter can be noted for the ACNOT1 gate in
which an already high fidelity (F = 0.9748) when using only n
= 1 at the transition frequency and 2A/2φ, increases in fidelity
only moderately when the number of frequency components
is increased.

D. Qubit population dynamics

To illustrate the nature of the qubit excitations, the pop-
ulation dynamics for selected quantum gates are plotted.
For the ACNOT1 gate there is a comparison between the
T = 7.47 ps single frequency using n = 1 with 2A/2φ opti-
mization (F = 0.9748) and to the full T = 7.47 ps using n
= 13 with 32A/2φ optimization (F = 0.9927). The compari-
son for the NOT2 gate is between two high fidelity points for
different pulse durations, namely, 44.03 ps using n = 1 with
2A/2φ optimization (F = 0.9994) and 52.84 ps using n = 10
with 32A/2φ optimization (F = 0.9123). Finally, a compari-
son is made between the Had2 gate when T = 24.28 ps using
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FIG. 7. Resulting population dynamics for the four qubit transformations of
the ACNOT1 quantum gate of pulse duration T = 7.47 ps when using n = 1
with 2A/2φ (solid lines) and using n = 13 with 32A/2φ (dotted lines). (a) |00〉
→ |01〉, (b) |01〉 → |00〉, (c) |10〉 → |10〉, and (d) |11〉 → |11〉. Black: |00〉,
red: |01〉, green: |10〉, and blue: |11〉.

n = 10 with 32A/2φ (F = 0.9834) and T = 48.30 ps using n
= 1 with 2A/2φ (F = 0.9742).

1. ACNOT1 quantum gate

Figure 7 illustrates the resulting population dynamics for
laser pulses optimized using T = 7.47 ps with the single tran-
sition frequency 2151 cm−1 (n = 1) and 2A/2φ components,
and also T = 7.47 ps at 2151 cm−1 but with multiple fre-
quency components (n = 13) and 32A/2φ. In Figures 7(a)
and 7(b) the qubit transition |00〉↔|01〉 (black and red, re-
spectively) is shown. A pulse area theorem analysis42–45 of
the resulting laser pulse and corresponding transition dipole
moment using a single frequency laser pulse (n = 1; Figure
7, solid line) coincides well with the resulting population dy-
namics. Using Eq. (9) from the work of Cheng and Brown,45

for determining the pulse area, produces a value of 1.04π .
This result corresponds to the first occurrence of population
inversion between the two qubits which is observed as a 1

2
Rabi cycle. When a laser pulse optimization is carried out for
n = 13 (solid line) the population dynamics seem to be a more
complicated form of 1

2 Rabi cycle. For the |10〉 → |10〉 (Fig-
ure 7(c)) and |11〉 → |11〉 (Figure 7(d)) qubit transitions, re-
quiring only a phase change to ensure global phase alignment,
there is a small amount of intermediate population exchange
between nearby qubits. Specifically, in both cases, a small ex-
change was observed for qubit |10〉 with |11〉 and |10〉, and
|11〉 with |01〉 and |10〉. The majority of the fidelity for the
ACNOT1 gate under these conditions is attributed to the cen-
tral frequency and optimal pulse energy. Further fidelity in-
creases are attributed to variations in frequency components
and amplitude, in order to bring the fidelity near 100%.
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FIG. 8. Resulting population dynamics for the four qubit transformations of
the NOT2 quantum gate when using a pulse of length T = 44.03 ps, n = 1,
and 2A/2φ (solid lines), and using a pulse of length T = 52.84 ps, n = 10,
and 32A/2φ (dotted lines). (a) |00〉 → |01〉, (b)|01〉 → |00〉, (c) |10〉 → |11〉,
and (d) |11〉 → |10〉. Black: |00〉, red: |01〉, green: |10〉, and blue: |11〉.

2. NOT2 quantum gate

The population dynamics for optimized laser pulses with
T = 44.03 ps using n = 1 with 2A/2φ and an optimized laser
pulse with T = 52.84 ps using n = 10 with 32A/2φ are shown
in Figure 8. Figures 8(a) and 8(b) illustrate that for T = 44.03
(solid line) the |00〉↔|01〉 transition proceeds through a 3

2

Rabi cycle and the |10〉↔|11〉 transition through a 1
2 Rabi cy-

cle. This observation is also concluded by a pulse area theo-
rem analysis of the laser pulse and respective transition dipole
moments, as implemented previously for ACNOT1. By using
the analytic form of the laser field (Eq. (3)) the sub-pulses
constituting each individual resonant transition can be deter-
mined. The sub-pulse with frequency and transition dipole
moment corresponding to the |00〉↔|01〉 transition produces
a value of 3.008π whereas similar pulse area theorem analy-
sis for the |10〉↔|11〉 transition produces a value of 1.005π .
The value of 3.008π corresponds to the second occurrence
of population inversion or observed 3

2 Rabi cycle and the
value of 1.005π corresponds to the first occurrence of pop-
ulation inversion or 1

2 Rabi cycle. The Rabi cycle pathways
are switched when the total pulse duration is T = 52.84. It
is also possible to enforce the transitions to be both 1

2 Rabi
cycles. For T = 52.84 ps, n = 2, and E = 100 μJ, the initial
maximum amplitudes were selected as: A1= 0.125 (64A, 2φ)
and A2 = 1.00 (512A, 2φ). The amplitude restriction is en-
forced on A1 since we know from Table V the optimal value
for A2 will be low ( 0.010). The anticipated 1

2 Rabi cycle was
produced for both NOT2 gate transitions and resulted in A1

= 0.0516, A2 = 0.098, and F = 0.8024. A larger fidelity was
found when A1 was not restricted (F = 0.8459; Table V) and
thus the transitions which both consist of 1

2 Rabi cycles were
not optimally chosen by the GA.
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FIG. 9. Resulting population dynamics for the four qubit transformations
of the Had2 quantum gate when using a pulse of length T = 24.28 ps,
n = 10, and 32A/2φ (solid lines), and using a pulse of length T = 48.30
ps, n = 1, and 2A/2φ (dotted lines). (a) |00〉 ↔ 1√

2
(|00〉 + |01〉), (b) |01〉

↔ 1√
2

(|00〉 − |01〉), (c) |10〉 ↔ 1√
2

(|10〉 + |11〉), and (d) |11〉 ↔ 1√
2

(|10〉
− |11〉). Black: |00〉, red: |01〉, green: |10〉, and blue: |11〉.

3. Had2 quantum gate

Finally, the population dynamics for optimized laser
pulses with T = 24.28 ps using n = 10 with 32A/2φ and T
= 48.30 ps using n = 1 with 2A/2φ are shown in Figure 9.
This figure illustrates that the T = 48.30 ps optimized laser
pulse causes all qubit transitions to proceed through a 3

4 Rabi
cycle. This is verified with a subsequent pulse area theorem
analysis, analogous to those carried out with the NOT2 gate
above. The transitions involving the qubits |00〉 and |01〉 pro-
duce a value of 1.493π , and those involving |10〉 and |11〉
produce a value of 1.496π . When the laser pulse optimized
is 24.28 ps, the resulting optimized laser pulse produces rela-
tively complex population dynamics, requiring many interme-
diate exchanges of population between qubit pairs and other
rovibrational states of the Had2 gate. This being attributed to
having more frequency components (n = 10).

IV. CONCLUSION

A number of experimental pulse shaping parameters and
their effects on the fidelities of laser pulses shaped to rep-
resent the ACNOT1, NOT2, and Had2 quantum logic gates,
were studied. Pulse shaping occurs in the frequency domain
using a discretized spectrum with independent control of
amplitude and phase dependent frequencies, similar to cur-
rent LC-SLM setups. The parameters that were varied are
(i) the frequency resolution (dν) or synonymously the pulse
duration (T), (ii) the number of frequency components (n),
(iii) the number of amplitude components (Aj), and (iv) the
number of phase components (φj). A time domain analytic
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form for the discretized frequency spectrum was also formu-
lated.

Initially, an exploration of the pulse duration was carried
out for each quantum gate using laser pulses with with 2A and
2φ variation of A = 0 or 1 and φ = 0 or π . The resulting plots
showed a simple relationship between the fidelity and pulse
duration for the ACNOT1 and NOT2 gates. The plot obtained
for the Had2 gate showed a complex relationship. The trends
observed for the ACNOT1 gate fidelities at chosen pulse dura-
tions was attributed to the difference in the natural evolution
of the rovibrational state qubits |10〉 and |11〉.

In order to determine the optimal laser pulse energy at the
qubit transition frequency/frequencies for each quantum logic
gate shaped laser pulse, the amplitudes were varied by 512A,
while keeping the phase at 2φ (0 or π ), for select values of
pulse duration. The optimal amplitude chosen for each pulse
duration at 30 μJ for the ACNOT1 gate was already very near
the previous choice of 1.0 for a 10 μJ pulse, so the fideli-
ties did not change substantially. Two transition frequencies
were required for the NOT2 and Had2 gates, and the result-
ing amplitudes were of differing magnitudes indicating that
one transition requires more energy than the other. A sub-
stantial increase in the fidelity was observed in these cases
since the previous optimizations used non-optimal laser pulse
energies.

Finally, we investigated the affect of increasing the num-
ber of frequency components on quantum gate fidelities.
Laser pulses of one pulse duration each were shaped with 13
frequencies (ACNOT1) or 10 frequencies (NOT2 and Had2)
each with 2A/2φ, 32A/2φ, and 2A/32φ amplitude and phase
combinations. A full optimization of 13 or 10 frequencies
and 32A/2φ was calculated, but without optimizing the tran-
sition frequency energy and allowing the amplitudes to have
more energy flexibility per frequency component. Again, am-
plitude variation played a major role in improving the fideli-
ties and in some cases caused an improvement of 10%. Sur-
prisingly, phase variation at most caused an increase of only
1.5%. The full optimization was very close to the results of
regular 32A/2φ variation, except in the case of the NOT2 gate,
likely due to the necessity of large variations in energy per fre-
quency component.

Overall, it was determined that the majority of
the quantum gate fidelity resides in the transition fre-
quency/frequencies and more so determining an optimal
energy associated with them. Addition of further frequency
components can cause some incremental increases in the
fidelity. Moreover, optimized laser pulses that produce large
fidelities exhibit pulse areas that obey optimal pulse area
theorem solutions. For the case of the ACNOT1 and NOT2

quantum gates when n = 1 or 2, respectively, optimally
shaped laser pulses produce values of odd integer multiples
of π (e.g., π , 3π ) in order to induce recurring population
inversions. High fidelity optimally shaped laser pulses for the
Had2 quantum gate when n = 2 produce values of odd half
integer multiples of π (e.g., 3π

2 ) in order to induce recurring
superpositions between the qubits. Also, the variation of
phase seemed to provide no significant improvement upon
the fidelity. High fidelity control of rovibrational state qubits
for quantum gate operation through a shaped laser pulse also

seems to be largely influenced by the natural evolution of the
qubits.

As mentioned in the introduction, OCT is another com-
monly implemented laser pulse optimization procedure. It is
difficult to compare and contrast results obtained by OCT ver-
sus those by the GA because the OCT algorithm would re-
quire discrete frequency filtering to resemble the GA model.
Moreover, the method by which global phase alignment is
implemented within OCT is different than the fidelity func-
tion used in GA optimizations and thus so is the weight of
global phase alignment in each. Subsequent optimizations by
OCT and GA would have differing selective pressures and,
in general, would end up in differing regions of the laser
pulse search space. In our previous study31 we used OCT
and GA procedures together to show that optimal laser pulses
can be shaped in either case but comparisons between the re-
sults of each could not be clearly made. It may be necessary
from a theoretical stand point that further investigations be
done in order to elucidate relationships between laser pulses
shaped using OCT and GA optimizations, and the resulting
dynamics.
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APPENDIX: DERIVATION OF THE ANALYTIC FORM
OF THE LASER PULSE

We begin the derivation of an analytic form of the laser
pulse, by starting with the simple condition of the discretized
frequency domain laser pulse, f(ν), consisting of a single fre-
quency component centered at ν j with a resolution, dν,

f (ν) =
{

ε(νj ), νj − dν
2 ≤ ν ≤ νj + dν

2

0 otherwise
. (A1)

Since there is only one frequency component, everywhere else
outside of the frequency resolution is satisfied by f(ν) = 0.
This would be the condition of Figure 2(a) if only the central
frequency, ν0, were considered. A Fourier transform of this
frequency domain laser pulse f(ν), produces the resulting time
domain laser pulse, F(t),

F (t) =
∫ νj + dν

2

νj − dν
2

f (ν)ei2πνt dν. (A2)
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Substituting in the Fourier transform, our initial case of a sin-
gle frequency laser pulse, produces the following:

F (t) = ε(νj )
∫ νj + dν

2

νj − dν
2

ei2πνt dν

= ε(νj )

(
ei2πtdν/2 − e−i2πtdν/2

i2πt

)
ei2πνj t

= ε(νj )
sin(πtdν)

πt
ei2πνj t . (A3)

The resulting equation can be written in terms of a sinc func-
tion,

F (t) = dνε(νj )sinc(πtdν)ei2πνj t , sinc(x) = sin(x)

x
. (A4)

Substituting explicitly the frequency domain laser pulse in-
tensity, ε(ν j), used in this case, one obtains

F (t) = dνε0

√
Aje

−2 ln 2
(

νj −ν0
�ν

)2

eiφj sinc(πtdν)ei2πνj t

= dνε0

√
Aje

−2 ln 2
(

νj −ν0
�ν

)2

sinc(πtdν)ei(2πνj t+φj ).

(A5)

The laser pulse is a real quantity, such that

� [F (t)]

= dνε0

√
Aje

−2 ln 2
(

νj −ν0
�ν

)2

sinc(πtdν) cos(2πνj t + φj ).

(A6)

The resulting single frequency laser pulse produced from a
discretized frequency spectrum is

� [F (t)] = A′
j sinc(πtdν) cos(2πνj t + φj ), (A7)

where

A′
j = dνε0

√
Aje

−2 ln 2
(

νj −ν0
�ν

)2

. (A8)

The above formalism for a single frequency component
from a discretized spectrum, can be extended to a frequency
spectrum, ε(ν), of n frequency components. The Fourier
transform of a discretized frequency spectrum of n frequency
components is the sum of the Fourier transform at each indi-
vidual discretized frequency, j. Thus, the general form of the
time domain laser pulse, ε(t), with the discretized form de-
scribed by Eq. (2) is

ε(t) = sinc(πtdν)
n∑

j=0

A′
j cos(2πνj t + φj ). (A9)
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