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Determination of molecular vibrational state energies using the ab initio
semiclassical initial value representation: Application to formaldehyde
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We have demonstrated the use of ab initio molecular dynamics (AIMD) trajectories to compute
the vibrational energy levels of molecular systems in the context of the semiclassical initial value
representation (SC-IVR). A relatively low level of electronic structure theory (HF/3-21G) was used in
this proof-of-principle study. Formaldehyde was used as a test case for the determination of accurate
excited vibrational states. The AIMD-SC-IVR vibrational energies have been compared to those
from curvilinear and rectilinear vibrational self-consistent field/vibrational configuration interaction
with perturbation selected interactions-second-order perturbation theory (VSCF/VCIPSI-PT2) and
correlation-corrected vibrational self-consistent field (cc-VSCF) methods. The survival amplitudes
were obtained from selecting different reference wavefunctions using only a single set of molecular
dynamics trajectories. We conclude that our approach is a further step in making the SC-IVR method
a practical tool for first-principles quantum dynamics simulations. © 2011 American Institute of
Physics. [doi:10.1063/1.3553179]

I. INTRODUCTION

Molecular dynamics (MD) simulations are classical in-
vestigations of the nuclear degrees of freedom where the elec-
tronic part of a molecular system is treated simply as an
effective “force” term which is an integral component in the
nuclear equations of motion. Traditionally, the force is ob-
tained from an empirically derived potential energy surface
(PES) or from a PES fit to single-point quantum mechan-
ical calculations. Ab initio molecular dynamics (AIMD), or
so-called “direct dynamics,” simulations1 are those where the
forces are calculated “on the fly” without the need for a PES,
making them amenable to a broad range of problems. The
AIMD approach is powerful due to the unnecessary need to
produce a predetermined PES, of which it is impractical to
obtain for problems involving more than a small number of
vibrational degrees of freedom. In cases where there are nona-
diabatic effects or bond breaking/formation, the ab initio ap-
proach is particularly useful. AIMD can represent classical
phenomena correctly, within the accuracy of the integrator
and the chosen ab initio electronic structure method.

Classical MD simulations are successful in many situ-
ations where quantum effects are negligible or not of in-
terest. However, when quantum effects are important, stan-
dard MD fails. Properties such as molecular energy states,
interference, and coherence are nonclassical phenomena and
are computed from quantum mechanical equations or their
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isomorphic equivalent, the path integral. The difficulty with
solving quantum mechanical equations directly is that of ex-
ponential scaling. Therefore, a variety of different approaches
have been suggested to circumvent this scaling problem. De-
pending on the method, certain properties are more easily
attainable (or accurate) than others. For example, one may
use the multiconfiguration time-dependent Hartree (MCTDH)
(Refs. 2, 3, and 4) approach to approximate the full quantum
mechanical solution. While a very powerful approach, the
MCTDH method in general necessitates a full-dimensional
PES fit to product form and, hence, has only been used for
modest-sized systems of three to seven atoms. MULTIMODE

(Refs. 3 and 5) is another software code that can calcu-
late rovibrational energies of polyatomic molecules by us-
ing vibrational self-consistent field (VSCF) and vibrational
configuration interaction (VCI). From the path integral for-
mulation, the diffusion Monte Carlo (DMC) (Ref. 6) method
can obtain ground state properties to very good accuracy. Its
basis is the expression of the solution to the Schrödinger
equation as a sum of exponentials in imaginary time. Un-
fortunately, DMC works only when the wavefunction is
positive, meaning any wavefunction which has nodes (i.e.,
excited states) will not work. To deal with node-crossing in
DMC, one has to apply a fixed-node approach where each re-
gion of the wavefunction is treated separately7 [node-release
DMC (Ref. 8) is a variant]. Ring polymer molecular dynam-
ics (RPMD) is another method which can compute dynamical
properties. One can then obtain real-time Kubo-transformed
time-correlation functions.9 In practice, however, as system
size increases, these methods may become intractable, as
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either basis set, dimensionality or convergence issues mul-
tiply. For example, we are often limited to use pair po-
tentials for DMC and RPMD or require a full-dimensional
PES.

Semiclassical dynamics is another method for obtain-
ing quantum-mechanical properties by representing the sys-
tem in terms of definite positions and momenta.10 The
framework of computation is then classical. The semi-
classical propagator developed by van Vleck11 has been
the basis of many practical advancements in semiclassical
theory12–14 and has been recently reviewed by Thoss and
Wang15 and by Kay.16 In particular, a semiclassical ini-
tial value representation (SC-IVR) propagator was devel-
oped in 1984 by Herman and Kluk,17 see also (Refs. 18,
19), which expresses the quantum time-propagation correla-
tion function as a semiclassical expression in terms of co-
herent states. Unlike its predecessors,11, 12 an initial value
representation eliminates root search and singularity prob-
lems. Instead of finding all possible paths between two
coordinate-space points, one only needs initial-value informa-
tion. This means the use of classical molecular dynamics tra-
jectories is possible. The only other information required in
addition to the classical trajectory itself is Hessian informa-
tion from the dynamics.

In the last decade many developments in the SC-IVR
method have been undertaken.20–35 Among them have been
prescriptions for the calculation of vibrational states,24, 29, 32–36

vibronic absorption spectra,26 reactive processes,21 and
quantum coherence.27 Recently, two research groups have
been involved in investigating ab initio SC-IVR, where
the trajectories are calculated on the fly. Tatchen and
Pollak26 computed the absorption spectrum of the S0 → S1

transition of formaldehyde using the time-dependent den-
sity functional theory (TD-DFT) (Ref. 37) method with the
Perdew–Burke–Ernzerhof (PBE) (Ref. 38) functional. They
used a unity-valued Herman–Kluk (HK) prefactor (see Sec.
II for definition) to calculate the Herzberg–Teller correlation
function. Most recently, Aspuru-Guzik and co-workers28, 29

employed AIMD in the study of the vibrational states of
CO2, which can be computed from the quantum time au-
tocorrelation function. Here, they used a variant of SC-
IVR called time-averaged SC-IVR, which utilizes a signif-
icantly reduced number of trajectories. Comparisons were
made to states determined from fitted potential surfaces
and the accuracy of state energies was examined. There
have also been a number of other studies based on fit-
ted PESs using SC-IVR to examine molecular vibrational
states. Kaledin and Miller24, 36 have obtained the vibrational
states of H2, H2O, NH3, CH4, CH2D2 and H2CO with
SC-IVR as well as time-averaged SC-IVR.24 Roy and co-
workers23, 32–35 developed a reduced-dimensionality approach
through Cartesian geometric constraints [applying it to Ar3

and (H2O)2], which is amenable for the computation of larger
systems.

The focus of this paper is to determine accurate molec-
ular vibrational states through a semiclassical approach. De-
termination of vibrational state energies within the harmonic
approximation is trivial for even very large systems. However,
when anharmonic corrections are introduced, the computa-

tional effort is much more considerable. What is possible
to do—through the use of classical-based dynamics—is to
use spectral densities from ab initio SC-IVR to compute
vibrational state energies. By incorporating terms accounting
for probability amplitudes, SC-IVR reintroduces the quan-
tum contribution into the classical simulation. In this paper,
we provide further insight into ab initio-based SC-IVR us-
ing H2CO as a model system and address several points that
have not been considered in previous studies.24, 28, 29, 32–34, 36

As opposed to time-averaged SC-IVR,24 we use standard
SC-IVR (i.e., full phase space averaging) and an approx-
imation of the Herman–Kluk prefactor (see Sec. II for
discussion). Previous work36 has utilized reference wave-
functions chosen on the basis of symmetry, but here we
separate them on a normal-mode basis. Careful analysis
of the results as a function of the chosen reference wave-
function is done. We also demonstrate a practical tool
for performing ab initio SC-IVR within the MOLECU-
LAR MODELLING TOOLKIT (MMTK),39 a molecular dynam-
ics software package. The low-lying vibrational states of
H2CO are determined and compared to harmonic, quartic
force field correlation-corrected vibrational self-consistent
field (cc-VSCF),40 direct cc-VSCF,41–43 direct rectilinear-
vibrational self-consistent field/vibrational configuration in-
teraction with perturbation selected interactions-second-order
perturbation theory (VSCF/VCIPSI-PT2) as well as reference
direct curvilinear-VSCF/VCIPSI-PT2 method results.44, 45

Section II presents a brief review of the mathematical
formulation of SC-IVR. Section III covers the details re-
garding the computation of the spectral density of H2CO. In
Sec. III A, we introduce the electronic structure methods used
to produce the ab initio energies and frequencies. The most
important component of the method is the phase space inte-
gral, which is obtained from the classical dynamics trajecto-
ries, as detailed in Sec. III B. The final spectral density de-
pends largely on the reference wavefunction and so the pre-
scription for determining the reference wavefunction and its
overlaps are discussed in Sec. III C. Results and discussion
of the obtained vibrational states follow in Sec. IV. Section V
presents our final conclusions.

II. THEORY

The quantum mechanical survival amplitude is defined as

C(t) = 〈�|e−i Ĥ t/¯|�〉 (1)

and represents the correlation between a wavefunction at ini-
tial time t = 0 with itself at time t . � is an arbitrary reference
wavefunction and will from now on be denoted as �ref. The
quantum propagator e−i Ĥ t/¯ determines the time-evolution
of a molecular system. Within the SC-IVR approach, the
quantum propagator can be replaced with the semiclassical
Herman–Kluk propagator:17–19, 46

e−i Ĥ t/¯ = (2π¯)−3N
∫ ∫

dp0dq0 Rp0,q0,t e
i Sp0 ,q0 ,t /¯

× |gpt ,qt 〉〈gp0,q0 |. (2)

The integrals are over the mass-weighted phase space
variables, p0 and q0, and are determined through Monte
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Carlo sampling. |gpt ,qt 〉 and 〈gp0,q0 | are coherent state
representations of the minimum-uncertainty wavepacket,
which is a multivariate Gaussian function of coherent-state
width13, 17, 47

γ = 2LαLT , (3)

where L is the eigenvector matrix and α is the eigenvalue
matrix from the Hessian evaluated at the potential minimum.
Coherent states have the property that the center of the Gaus-
sian evolves according to the classical equations of motion.
Both the coherent states at the initial (0) and current (t) times
are required. Rp0,q0,t represents the Herman–Kluk prefactor, a
stability matrix. Sp0,q0,t is the classical action, specifying the
phase of the Gaussian wavepacket.

In this paper, we do not use the exact form17 of the
Herman–Kluk prefactor:

Rp0,q0,t =
√

det

[
1

2

(
∂qt

∂q0
+ ∂pt

∂p0
− i¯γ

∂qt

∂p0
+ i

γ¯

∂pt

∂q0

)]
,

(4)

which is a determinant of monodromy stability matrices, re-
quiring the derivatives of the time-evolved (pt , qt ) variables
with respect to the initial variables (p0, q0). In the present
work, we use a locally quadratic approximation for the HK
prefactor, i.e.,

Rp0,q0,t = exp

⎡
⎣− i

¯

∫ t

0
dt ′

3N−6∑
j=1

¯ω j (t ′)
2

⎤
⎦ . (5)

Note that Miller and co-workers refer to this expression as the
“Johnson multichannel WKB approximation.”48, 49 We adopt
the same terminology as Miller for the remainder of this pa-
per. In Eq. (5), ω j corresponds to the angular frequency of
each vibrational mode j at time t ′. This is the local harmonic
frequency (a frequency calculation not necessarily at a sta-
tionary point) of each timestep of the trajectory. It may be
calculated at the same time as the dynamics step, reducing the
electronic structure calculation overhead. This prefactor has
been successfully used in studies of the vibrational states of
weakly bound trimers and the water dimer.32–35

The phase term, ei Sp0 ,q0 ,t /¯, comes from the Lagrangian
equations of motion. The classical action S is the time-integral
of the Lagrangian along the trajectory:

Sp0,q0,t =
∫ t

0
dt ′

(
p2

t ′

2m
− V (qt ′ )

)
. (6)

The use of classical trajectories implies a Stationary Phase
Approximation.

Combining Eqs. (1) and (2), we obtain a semiclassical
expression for the survival amplitude, i.e.,

C(t) = (2π¯)−3N
∫ ∫

dp0dq0 Rp0,q0,t e
i Sp0 ,q0 ,t /¯

×〈�ref|gpt ,qt 〉〈gp0,q0 |�ref〉, (7)

where the overlap of �ref with the coherent state produces

〈gp,q|�ref〉 = exp

[
−1

4
(q − qref)

T γ (q − qref) − 1

4¯2

× (p − pref)
T γ −1 (p − pref)

+ i

2¯
(p + pref)

T (q − qref)

]
. (8)

pref and qref are the reference state mass-weighted momenta
and positions, respectively. γ in this equation takes on the
same values as in Eq. (3). The overlaps have a general Gaus-
sian form. The reference state constitutes a chosen “trial”
wavefunction, which is the desired state of interest. C(t) is
the correlation of the state of the system with this reference
function, meaning the chosen reference function serves as an
“extractor” for eigenstates near it. Note that in practice, the
above overlap is also symmetry-adapted, which will be ex-
plained in Sec. III C.

When Eq. (7) is Fourier-transformed, the resultant power
spectrum produces the energy eigenvalues of the Hamiltonian
Ĥ :

I (ω) = 1

2π

∫ ∞

−∞
dt eiωt C (t) , (9)

with the intensities of the peaks directly related to the choice
of reference wavefunction.

III. COMPUTATIONAL METHODS

A. Electronic structure and harmonic frequencies

In order to benchmark our SC-IVR approach, the
ab initio electronic structure calculations were carried out at
the HF/3-21G level of theory.50, 51 The equilibrium geometry
is given in Table I. Energies at which the simulation is run are
far below than that of the HF transition state (37 700 cm−1).52

The availability of analytic gradients and Hessians, required
for the classical dynamics and HK prefactor evaluation, re-
spectively, is a major asset and guided, along with its com-
putational efficiency, the choice of the Hartree–Fock level of
theory. In principle, any electronic structure theory methodol-
ogy, for which analytic gradients and Hessians are available,
could be utilized. Our calculations made use of the GAMESS-
US 2007 and 2009 quantum chemistry packages.53

TABLE I. Equilibrium geometry of H2CO at the HF/3-21G level of theory.
Bond lengths are given in Angstrom (Å) and the bond angle in degrees (◦).

Parameter Value

rCO 1.207
rCH 1.083
θHCO 122.5
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B. Trajectories for phase space average

To determine the initial conditions for the ensemble of
trajectories, a Monte Carlo sampling of M = 20 000 sets of
initial geometric configurations and momenta was produced,
corresponding to a coherent state Gaussian wavepacket
centered at the HF/3-21G equilibrium geometry and with
zero momentum. This phase space sampled represents
|〈gp0,q0 |�eq〉|2, whose form is identical to that of Eq. (8). The
coordinate and momentum widths of Eq. (8) are

√
2/γ and

¯
√

2γ , respectively. Of these initial conditions, only motion
in the 3N − 6 internal degrees of freedom is allowed, and so
the original values are adjusted, fixing the molecule’s cen-
ter of mass and spatial orientation. Note that only one set
of initial conditions is used for the various reference wave-
functions and therefore, a reweighting procedure is required.
Equation (7) can be rewritten with the insertion of unity
1 = |〈gp0,q0 |�eq〉|2/|〈gp0,q0 |�eq〉|2 as

C(t) = (2π¯)−3N
∫∫

dp0dq0 Rp0,q0,t e
i Sp0 ,q0 ,t /¯

×〈�ref|gpt ,qt 〉〈gp0,q0 |�ref〉 |〈gp0,q0 |�eq〉|2
|〈gp0,q0 |�eq〉|2 . (10)

The initial conditions essentially impose a bias of
|〈gp0,q0 |�eq〉|2 (the numerator in 1) in the phase space
distribution which must be accounted for by division of the
bias. The Monte Carlo estimate is therefore

C(t) = 1

M

M∑
m=1

[
Rp0,q0,t e

i Sp0 ,q0 ,t /¯
〈�ref|gpt ,qt 〉〈gp0,q0 |�ref〉
〈�eq|gp0,q0〉〈gp0,q0 |�eq〉

]
m

.

(11)

This choice of sampling greatly reduces the computational
cost as only one set of ab initio trajectories is required instead
of a full phase space distribution.

Approximately 38% of the 20 000 generated initial ge-
ometries and momenta had a total energy less than 300 kJ/mol
(∼25 000 cm−1). Initial conditions with energies above
300 kJ/mol were discarded. Energies below 300 kJ/mol place
the molecule well below the transition state, which is impor-
tant in the numerical stability of the Herman–Kluk prefac-
tor. Additionally, the semiclassical survival amplitude, C(t),
was computed only when |〈gp0,q0 |�eq〉|2 > 10−10. Low over-
lap leads to negligible contribution to the average of the sur-
vival amplitude. From each of these initial conditions, a 244
fs constant energy molecular dynamics trajectory was de-
termined using MMTK.39 These trajectories constitute the
phase space average, which is the multidimensional integral in
C(t). The equations of motion were computed with Velocity-
Verlet54 integration. During the dynamics, the Hessian at each
timestep (0.5 fs) is saved and diagonalized. The resultant
eigenvalues are necessary for the calculation of the HK pref-
actor which requires the local harmonic zero point energy
[see Eq. (5)].

C. Reference wavefunctions and overlaps

The coherent state overlaps are functions of mass-
weighted geometry and momentum. A choice of reference

TABLE II. Harmonic normal mode labeling and frequencies (cm−1). Fre-
quencies are determined at the HF/3-21G level of theory.

Mode Assignment Frequency

ν1(A1) CH2 symmetric stretch 3162
ν2(A1) CO stretch 1916
ν3(A1) CH2 scissor 1693
ν4(B1) CH2 wag 1337
ν5(B2) CH2 asymmetric stretch 3233
ν6(B2) CH2 rock 1378

wavefunction where qref is located at the equilibrium
geometry and pref = 0, will produce the highest overlap with
the lowest vibrational state (zero point energy). In all cases we
choose pref to be zero, for simplicity, and we vary only qref.
The width is chosen to be γ as previously defined, meaning
that �ref is the exact harmonic ground state wavefunction, and
there is no appreciable overlap with any state other than the
ground state. When another reference wavefunction is chosen,
it will be those coherent states (i.e., phase space points along
the trajectory) which have highest overlap with this wavefunc-
tion that will contribute the most to the survival amplitude.
One way to vary the wavefunction in order to obtain addi-
tional states is to apply a technique where the atoms are spa-
tially displaced along a normal mode coordinate. As a result,
it is easy to interpret the magnitude of displacement (c) with
the energy put “into” a mode ν j (in this work, we use ν to de-
note the mode itself). For instance, by letting c = √

¯/ω j dis-
placement of mode ν j , this means that the molecule has been
displaced from equilibrium along ν j and thus has 1/2(¯ω j ) of
potential energy (assuming the motion is perfectly harmonic).
Essentially, this provides an excited state reference wavefunc-
tion. The normal modes are as assigned in Table II. By al-
lowing just single normal mode displacements, this should
effectively produce a spectrum with peaks only at the fun-
damental frequencies and overtones, i.e., (n1 · · · n j · · · nN ) :
n j 
=k = 0, nk ∈ Z>0.

A Monte Carlo procedure is used to estimate the phase
space integrals and therefore, all eigenstates could contribute
to the survival amplitudes. The normal mode displacements in
the reference wavefunction are also not pure symmetry states.
To remedy this problem, we explicitly symmetrize the refer-
ence wavefunction. To do so, we project out specific sym-
metries by constructing a projection operator corresponding
to a specific irreducible representation of the C2v group. For
the case of symmetric A1 states, an unsymmetrized reference
wavefunction, |�ref〉, becomes,

|� A1
ref 〉 = 1

4

[
Ê |�ref〉 + Ĉ2|�ref〉 + σ̂v |�ref〉 + σ̂ ′

v |�ref〉
]
.

(12)

The use of the above wavefunction will ensure that energy lev-
els of a specific symmetry are extracted (cf. Ref. 36, where a
product of coherent states is used instead, with a symmetrizer
to extract states of particular molecular symmetry).

Because the width γ [see Eq. (3)] is identical to that of the
ground state wavefunction, one may visualize the displaced
reference wavefunction (prior to symmetrization) as simply a

Downloaded 03 Mar 2011 to 129.128.168.123. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



094110-5 Vibrational energies using AI-SC-IVR J. Chem. Phys. 134, 094110 (2011)

shift of the ground state wavefunction along a single normal
mode coordinate. For a given mode j , the new atom positions
in Cartesian coordinates is represented as the vector x j (we
call this x to differentiate this from the mass-weighted coor-
dinate q). For each individual coordinate α, the elements of
the vector x j are:

x j
α = Xα − c j

Lα j

μα

, (13)

where Xα is an element of the Cartesian equilibrium geometry
vector, μα is the square root of the mass of the atom associ-
ated with Cartesian component α, and Lα j is the eigenvector
element associated with displaced mode ν j . In this work, c j is
varied by factor d to adjust the magnitude of the normal mode
displacement (c j = d · √

¯/ω j ).

D. Reference bound state calculations

To determine the accuracy of the semiclassical re-
sults, we used a number of computational methods for
comparison: correlation-corrected vibrational self-consistent
field/two-mode coupling representation of a quartic force field
(cc-VSCF/2MR-QFF), direct cc-VSCF, VSCF/VCIPSI-PT2,
and curvilinear-VSCF/VCIPSI-PT2.

The VSCF procedure provides a variational solution to
the vibrational Schrödinger equation.55, 56 It uses a separable
product of one-coordinate functions to represent the total vi-
brational wavefunction, such that

�n(Q) =
N∏

j=1

ϕ(n)
n j

(Q j ), (14)

where (n) is a collective index representing the vibrational
state of interest, be it the ground state or any singly excited
state, overtone, or combination band. GAMESS-US (Ref. 53)
implements a correlation-corrected VSCF where the potential
energy surface including up to two-mode couplings can either
be computed using a quartic force field (cc-VSCF/2MR-QFF)
(Ref. 40) or by computing the PES on a grid using single-
point calculations (direct cc-VSCF).42

In the methodology developed by Benoit and co-
workers,44, 45 a variation-perturbative approach, perturbative
screening is used to iteratively update the initial vibrational
configuration interaction active space (VSCF/VCIPSI-PT2).
This calculation can be performed for a PES expressed
either in rectilinear or curvilinear coordinates (curvilinear-
VSCF/VCIPSI-PT2), which lends to more efficient com-
putation. The advantage of using curvilinear coordinates
is that it is amenable to systems of multiple local minima
and that it reduces mode–mode coupling, leading to a more
accurate representation of the vibrational states. Rectilinear
coordinates, on the contrary, often expand the wavefunction
over a single minimum and can introduce artificially large
mode–mode couplings. The curvilinear-VSCF/VCIPSI-PT2
vibrational states are used as our reference values.

In the current implementation (see Ref. 45 for details),
the set of curvilinear coordinates q is transformed into curvi-
linear normal mode coordinates, Q. The corresponding met-
ric tensor is constant and reduced to an identity operator δi j .

The application of the variational principle to the resulting
Hamiltonian:

Ĥ = −1

2

N∑
j=1

∂2

∂ Q2
j

+
N∑

j=1

V (1)
j (Q j ) +

N∑
i=1

N∑
j>i

V (2)
i j (Qi , Q j )

︸ ︷︷ ︸
V (Q)

(15)

leads naturally to N one-dimensional equations{
− 1

2

∂2

∂ Q2
j

+ V (1)
j (Q j ) + ϑ

(n)
j (Q j )

}
ϕ(n)

n j
(Q j ) = ε(n)

n j
ϕ(n)

n j
(Q j )

(16)

that are coupled through a mean-field potential

ϑ
(n)
j (Q j ) =

〈∏
i 
= j

ϕ(n)
ni

∣∣∣∣∣∣
N∑

i 
= j

V (2)
i j (Qi , Q j )

∣∣∣∣∣∣
∏
i 
= j

ϕ(n)
ni

〉
. (17)

The last two terms of the right-hand side of Eq. (15) are
a representation of the potential energy surface as a hierarchi-
cal expansion to second-order in curvilinear normal modes.
Each term of the potential expansion is computed on a grid
of points (direct approach), providing a simple and automatic
way of generating the PES directly from ab initio data with-
out requiring an analytic expression for V (Q). Note that, for
a curvilinear coordinate system, an extra potential term may
appear in the kinetic energy operator when a non-Euclidian
normalization convention is used. In the present study, we ne-
glect this contribution as it is typically very small compared
to the potential energy term.

The set of Eq. (16) are solved self-consistently until con-
vergence of the total VSCF energy. We then compute the
correlated vibrational eigenstates by diagonalizing the full
Hamiltonian of Eq. (15) in a virtual VSCF basis, as suggested
originally by Bowman et al.57–59 We perform this type of VCI
calculation for each VSCF-optimized state and use virtual ex-
citations to construct the VCI matrix in each case:

〈�r| Ĥ |�s〉 =
N∑

i=1

εri

∏
k 
=i

δrk sk + 〈�r| �V (n) |�s〉 , (18)

where the state-specific vibrational correlation operator,
�V (n) is defined as

�V (n) =
N∑

i=1

N∑
j>i

V (2)
i j (Qi , Q j ) −

N∑
j=1

ϑ
(n)
j (Q j ). (19)

Note that index (n) indicates that the effective potential is
computed for optimized VSCF state |�n〉. The resulting VCI
matrix is diagonalized using our iterative VCIPSI-PT2 proce-
dure based on a Davidson algorithm60–62 adapted for vibra-
tional calculations by Carter et al.59

IV. RESULTS AND DISCUSSION

Here we present the results of the calculation of the spec-
tral density of H2CO as determined by SC-IVR. The peaks of
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FIG. 1. Variation of the spectral density (displaced in ν1) with respect to the
type of HK prefactor used. The dashed (blue) line indicates use of the abso-
lute value of ω, the dotted (red) line sums only the positive frequencies and
the solid (black) line has a complex-valued ω (no further approximations).

the spectral density are the low-lying vibrational eigenvalues.
It is possible for SC-IVR to determine more states, albeit at
a substantial cost of longer (and possibly more) trajectories.
In this particular case, however, the correlation function de-
cays to a great extent within the timespan of the simulation
and so provides minimal difference in the spectra. Our goal
is a proof-of-principle of our implementation of the ab ini-
tio SC-IVR approach, rather than a thorough determination
of the eigenvalues of formaldehyde at the HF/3-21G level of
theory. The symmetry-adapted reference wavefunction of Eq.
(12) is used for all the SC-IVR results. The SC-IVR values are
compared to the harmonic approximation, cc-VSCF/2MR-
QFF, direct cc-VSCF, (rectilinear) VSCF/VCIPSI-PT2, and
curvilinear-VSCF/VCIPSI-PT2 methods described earlier.
While vibrational states in the harmonic approximation are
trivially obtained to the nth state, anharmonic terms are in-
creasingly difficult to compute. As a result, in all four VSCF
implementations, only two-mode couplings were utilized and
three-mode (and higher) couplings were neglected. In order to
make sure that the VSCF results used in the VSCF/VCIPSI-
PT2 methods are fully converged, we include up to four-mode
excitations in the VCI basis and allow up to eight excitation
quanta per mode. This leads to a large vibrational basis (about
70 000 states) that is more appropriate for describing combi-
nation bands and overtones. Given the large size of the ba-
sis, we performed the calculations with a slightly different
technique than VCI called vibrational configuration interac-
tion with perturbation selected interactions-second-order per-
turbation (VCIPSI-PT2). It has been shown45 that this method
gives virtually the same results as a standard VCI/VSCF cal-
culation. Of the four reference calculation types being consid-
ered, the curvilinear approach is the most accurate.

As detailed in Sec. II, we use an alternate form of the
Herman–Kluk prefactor. Johnson’s approximation48 has been
shown to be effective for weakly bound systems.32–35 This
approximation eliminates branch cut problems as well as the
need to calculate phase space derivatives. Instead, one only
needs to calculate the Hessian matrix at each geometry along
the trajectories. Diagonalization of the Hessian matrix gives
the eigenvalues, whose square roots are the local harmonic

frequencies. These ω j s are similar to frequencies calculated
at stationary points (i.e., at the equilibrium or transition
state geometries). Since the frequencies are calculated at
any point on the potential energy surface they are naturally
complex-valued. The result is a highly oscillatory exponential
term that increases noise in the survival amplitude function.
In Fig. 1, we present results comparing spectra obtained with
Johnson’s WKB approach along with several further approx-
imations. Issack and Roy32–35 took the approach of taking
the absolute value of all the frequencies (|ω|) to eliminate the
oscillating phase. This simplification results in a larger mag-
nitude term in the exponential of Eq. (5) since it is taking a
sum over additional positive real numbers. The HK prefactor,
Rp0,q0,t , becomes a larger negative complex exponent. This
appears to lead to overestimating the energy of the vibrational
states (see Fig. 1). As well, the decay of the survival ampli-
tude is much slower (not illustrated). Alternatively, if one
encounters an imaginary frequency, one can simply neglect
it, so that only the real frequencies are taken into account
(ω ∈ R). The different summations do provide minor differ-
ences in the spectral density, with the peak positions between
ω ∈ R and a complex ω being negligible. In fact, ω ∈ C
appears to reduce signal noise. However, the signal intensity
of the peaks is slightly diminished compared to ω ∈ R. The
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FIG. 2. Intensity (spectral density) plots from SC-IVR given symmetry-
adapted reference state overlaps with displacements along the three A1 nor-
mal modes, (a) ν1, (b) ν2, and (c) ν3, respectively. The curves are the SC-
IVR results. d represents the magnitude of displacement (energy ∝ d2) of
each mode (see text for details). The vertical lines represent the curvilinear-
VSCF/VCIPSI-PT2 reference bound state calculation. In each panel, the left-
most vertical line represents the ground vibrational state (000000), and in
the case of the first panel, the subsequent lines are the (100000), (200000),
(300000), and (400000) vibrational states. The other two panels are similarly
labeled.
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TABLE III. Fundamental vibrational states involving the A1 normal modes of H2CO at the HF/3-21G level as determined using various computational
methods. Units are in cm−1. The SC-IVR values were determined by the location of the point of the highest intensity peak of one or more spectra (average),
where each point was separated by < 0.5 cm−1. The mean absolute error (MAE) and root mean square deviation (RMSD) with respect to the curvilinear-
VSCF/VCIPSI-PT2 method are shown for the fundamental overtones.

State Harmonic cc-VSCF/2MR-QFF Direct cc-VSCF VSCF/VCIPSI-PT2 Curvilinear-VSCF/VCIPSI-PT2 SC-IVR

(000000) 6360 6271 6268 6268 6309 6311
(100000) 9522 9265 9254 9251 9320 9303
(010000) 8276 8155 8152 8152 8198 8208
(001000) 8053 7924 7922 7921 7980 8013
(200000) 12 685 12 183 12 136 12259 12232 12 297
(020000) 10 191 10 029 10 024 10023 10074 10 089
(002000) 9745 9574 9571 9571 9650 9587
(300000) 15 847 15 071 14 955 15103 15254 15 209
(030000) 12 107 11 893 11 885 11881 11936 11 961
(003000) 11 438 11 164 11 216 11216 11321 11 269
(400000) 19 010 — 17 721 17938 17996 17 848
(040000) 14 022 — 13 735 13727 13787 13 853
(004000) 13 131 — 12 851 12851 12986 12 904
MAE 257 74 104 72 — 48
RMSD 370 89 133 80 — 61

difference between the use of complex-, real-, or absolute-
valued frequencies may be in the tens of wavenumbers, which
may be significant for the accuracy of SC-IVR, although the
width of the spectral peaks is comparable to the shift due to
the type of prefactor. In the present work, we see no reason
not to use the complex-valued frequencies, since there ap-
pears to be no benefit in simplifying the WKB approximation
further (whether it is more difficult to converge the prefactor
in other systems, such as weakly bound complexes, warrants
further investigation). In all the following calculations we
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FIG. 3. Spectral density plots where the ν1 and ν2 A1 modes are displaced
simultaneously when constructing the reference wavefunction. The verti-
cal lines represent the reference curvilinear-VSCF/VCIPSI-PT2 values (see
Table III for labeling) (a) d = 1 and (b) d = 2.

maintain the complex value of the frequencies (ω ∈ C). Note
that all 12 eigenvalues of the Hessian are nonzero, including
the rotational and translational modes. As seen in Eq. (5), the
summation is only over 3N − 6 modes (cf. previous litera-
ture), so the extraneous nonvibrational frequencies must be
removed in the prefactor evaluation—we do so in the present
work by neglecting the six lowest magnitude frequencies.

Following Sec. III C, we examine the spectral density as
a function of the reference state chosen. We show the results
of simulations with normal mode displacements along the A1
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FIG. 4. Spectral density plots where the ν1 and ν3 A1 modes are displaced
simultaneously when constructing the reference wavefunction. The verti-
cal lines represent the reference curvilinear-VSCF/VCIPSI-PT2 values (see
Table III for labeling) (a) d = 1 and (b) d = 2.
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TABLE IV. Vibrational combination states involving the A1 normal modes of H2CO at the HF/3-21G level as determined using various computational
methods. Units are in cm−1. The SC-IVR values were determined by the location of the point of the highest intensity peak of one or more spectra (average),
where each point was separated by < 0.5 cm−1. Values with an asterisk (*) indicate that the assignment is uncertain.

State Harmonic cc-VSCF/2MR-QFF Direct cc-VSCF VSCF/VCIPSI-PT2 Curvilinear-VSCF/VCIPSI-PT2 SC-IVR

(110000) 11 438 11 164 11 133 11 126 11 211 11 191
(210000) 14 600 14 072 14 006 14 120 14 126 14 055*
(120000) 13 354 13 025 12 997 12 987 13 088 13 086
(220000) 16 516 — 15 860 15 967 16 004 15 952
(101000) 11 215 10 913 10 885 10 876 10 981 10 896
(201000) 14 377 13 795 13 735 13 844 13 884 14 115
(102000) 12 908 12 525 12 511 12 498 12 642 12 488*
(202000) 16 070 — 15 329 15 430 15 533 15 591*
(011000) 9968 9801 9805 9794 9858 9858
(021000) 11 884 11 665 11 672 11 653 11 722 11 690
(012000) 11 661 11 439 11 453 11 432 11 517 11 562
(022000) 13 576 — 13 316 13 279 13 370 13 544*

modes of vibration, ν1, ν2, and ν3. Since the wavefunction is
symmetry-adapted for A1, in theory, all A1 vibrational states
should be obtained. Yet, as solely the A1 normal modes are
excited, we only expect to obtain their fundamentals, over-
tones and, to a certain extent, their combination bands, the
others being of negligible amplitude.

The spectral density as determined by SC-IVR is shown
in Fig. 2. Three values of configurational displacement along
the normal mode (magnitude specified by d), are shown.
As can be seen, the further the reference wavefunction is
displaced from the equilibrium geometry, the larger the
overlap with higher energy states. Therefore, increasing the
reference wavefunction displacement is a systematic way to
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FIG. 5. Spectral density plots where the ν2 and ν3 A1 modes are displaced
simultaneously when constructing the reference wavefunction. The verti-
cal lines represent the reference curvilinear-VSCF/VCIPSI-PT2 values (see
Table III for labeling) (a) d = 1 and (b) d = 2.

determine vibrational states of increasing energy. The ground
state (000000) is resolved in all figures. Each of the curves in
Figs. 2(a), 2(b), and 2(c) resolves one set of vibrational
states (· · · n · · ·) due the overlap with a single normal mode
(in the harmonic limit). The benefit of such “filtering” is
that a cleaner spectrum is obtained, so that close-lying
eigenvalues are unequivocally differentiated. Spectral noise
and uncertainty are major issues for many-dimensional
systems and states of higher excitation. The intensities in
Fig. 2(a) have the broadest peaks because the reference
wavefunction energy (i.e., displacement) is largest (since it is
proportional to ω1). It is more difficult to extract states higher
in energy (phase space coverage decreases, meaning the
overlap term is often zero and therefore has no contribution
to the overall survival amplitude integral). Table III lists
the A1 fundamental and overtone vibrational state peak
positions up to four-quanta excitation and also the mean
absolute errors and root mean square deviations as compared
to curvilinear-VSCF/VCIPSI-PT2. The assignments are quite
close to the curvilinear bound state calculations (vertical
lines) for low excitation, and, in general, are well within
100 cm−1. As expected, errors and deviations become larger
as one goes higher in energy. The results show that the
SC-IVR results are systematically more accurate than that of
the cc-VSCF/2MR-QFF (i.e., a VSCF-type method), direct
cc-VSCF, and the rectilinear-VSCF/VCIPSI-PT2 (i.e., a
VSCF/VCI method) results when compared to the more ac-
curate curvilinear-VSCF/VCIPSI-PT2 reference calculations.

Figs. 3–5 show spectral densities consisting of reference
state displacements of two modes simultaneously. That is, it
is a linear combination of single mode displacements. Like
those shown in Fig. 2, the fundamental bands are obtained,
although with somewhat less accuracy. Many combination
bands are also visible, although given the width of the peaks
and that they are often near other states, assignments can be
made with less certainty. In most cases, the location of the
highest peak was the value tabulated in Table IV and if the
peaks were clearly defined or equally ambiguous in more than
one spectrum, the average of these locations were chosen.
This uncertainty may be rectified with a more detailed proce-
dure of displacing the reference wavefunction (here, we place
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a single quanta of energy into each normal mode) and po-
tentially increasing the number of trajectories involved in the
calculation.

V. CONCLUDING REMARKS

We have shown, using ab initio trajectory data, that the
vibrational eigenvalues of H2CO can be determined with
reasonable accuracy through the use of SC-IVR and that it
is systematically more accurate than VSCF and VSCF/VCI
methods. The curvilinear-VSCF/VCIPSI-PT2 bound state ap-
proach is used as our exact reference. Our semiclassical de-
scription comes at acceptable computational cost, but does
have limitations. The vibrational states determined are highly
sensitive to the reference wavefunction chosen. As such, for
a complete description of a range of eigenvalues, multiple
carefully constructed reference wavefunctions are required to
extract them. In this work, we chose symmetry-adapted ref-
erence wavefunctions that had excitations along 1 or 2 nor-
mal modes only. This prescription allows us to independently
and accurately determine fundamental states and some two-
state combination bands of A1 symmetry. This symmetrizing
enables easier assignment of states. The major bottleneck in
these simulations is the trajectory and Hessian computation.
However, once done, the phase space average for the survival
amplitude is readily calculated. An important outcome of the
present study is that in utilizing our newly proposed phase
space reweighting procedure, only a single set of ab initio tra-
jectories is required to obtain several power spectra.

In addition, we have examined the various implementa-
tions of Johnson’s WKB approximation for the calculation of
the HK prefactor. We have concluded that the local harmonic
frequencies require no further simplification (i.e., can remain
complex) since, at least in the case of H2CO, it is not com-
putationally advantageous. SC-IVR is an effective method for
determining energy levels beyond the harmonic limit. How-
ever, it remains to be seen whether results would be as ac-
curate for a more anharmonic system: at low energy, H2CO
is very harmonic. Therefore, the resolution of the data is a
significant factor if the anharmonic correction for the eigen-
values lies within the width of the spectral peaks. As anhar-
monicity increases, it may also be more difficult to obtain
accurate results due to the nature of the method (especially
with the harmonic WKB approximation). However, previous
results on the strongly anharmonic water dimer suggest that
the approximation is reasonable.34, 35 The challenge in ob-
taining higher excitations is another limitation, yet the solu-
tion might be simply increasing the number of trajectories.
How many more remains to be investigated. Ab initio SC-
IVR appears promising for extracting some quantum effects
in molecular systems and its practicality will be important
for larger molecules where full quantum simulations are not
currently possible.

ACKNOWLEDGMENTS

A.B., P.-N.R, and S.Y.Y.W. thank the Natural Sciences
and Engineering Research Council of Canada (NSERC) for

financial support and the Canadian Foundation for Innova-
tion for funding for computational resources. This research
has been (partially) enabled by the use of computing resources
provided by WestGrid and Compute/Calcul Canada. S.Y.Y.W.
thanks Dr. Bilkiss Issack for her input in the initial stages of
the project as well as Dr. José-Luis Carreón-Macedo for de-
velopment work and discussions in related efforts. S.Y.Y.W.
acknowledges the support of NSERC through the award of an
NSERC Canada Graduate Scholarship. This work was partly
supported by a grant (“SFB-569/TP-N1”) from the Deutsche
Forschungsgemeinschaft (DFG) to D.M.B.

1R. Iftimie, P. Minary, and M. E. Tuckerman, Proc. Natl. Acad. Sci. U. S. A.
102, 6654 (2005).

2H.-D. Meyer, U. Manthe, and L. S. Cederbaum, Chem. Phys. Lett. 165, 73
(1990).

3J. M. Bowman, T. Carrington, and H.-D. Meyer, Mol. Phys. 106, 2145
(2008).

4H.-D. Meyer, F. Gatti, and G. A. Worth, Multidimensional Quantum
Dynamics: MCTDH Theory and Applications (Wiley-VCH, Weinheim,
2009).

5J. M. Bowman, S. Carter, and X. Huang, Int. Rev. Phys. Chem. 22, 533
(2003).

6J. B. Anderson, J. Chem. Phys. 63, 1499 (1975).
7P. J. Reynolds, D. M. Ceperley, B. J. Adler, and J. W.A. Lester, J. Chem.
Phys. 77, 5593 (1982).

8D. M. Ceperley and B. J. Adler, J. Chem. Phys. 81, 5833 (1984).
9I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 121, 3368 (2004).

10M. F. Herman, Annu. Rev. Phys. Chem. 45, 83 (1994).
11J. H. van Vleck, Proc. Nat. Acad. Sci. U. S. A. 14, 178 (1928).
12W. H. Miller, J. Chem. Phys. 53, 3578 (1970)
13E. J. Heller, J. Chem. Phys. 75, 2923 (1981).
14K. G. Kay, J. Chem. Phys. 100, 4377 (1994).
15M. Thoss and H. Wang, Annu. Rev. Phys. Chem. 55, 299 (2004).
16K. G. Kay, Annu. Rev. Phys. Chem. 56, 255 (2005).
17M. F. Herman and E. Kluk, Chem. Phys. 91, 27 (1984).
18W. H. Miller, Mol. Phys. 100, 397 (2002).
19S. A. Deshpande and G. S. Ezra, J. Phys. A 39, 5067 (2006).
20W. H. Miller, J. Phys. Chem. A 105, 2942 (2001).
21X. Sun and W. H. Miller, J. Chem. Phys. 110, 6635 (1999).
22W. H. Miller, J. Phys. Chem. A 113, 1405 (2009).
23B. B. Harland and P.-N. Roy, J. Chem. Phys. 118, 4791 (2003).
24A. L. Kaledin and W. H. Miller, J. Chem. Phys. 118, 7174 (2003).
25J. M. Moix and E. Pollak, J. Chem. Phys. 129, 64515 (2008).
26J. Tatchen and E. Pollak, J. Chem. Phys. 130, 41103 (2009).
27G. Tao and W. H. Miller, J. Chem. Phys. 130, 184108 (2009).
28M. Ceotto, S. Atahan, S. Shim, G. F. Tantardini, and A. Aspuru-Guzik,

Phys. Chem. Chem. Phys. 11, 3861 (2009).
29M. Ceotto, S. Atahan, G. F. Tantardini, and A. Aspuru-Guzik, J. Chem.

Phys. 130, 234113 (2009).
30N. Makri and W. H. Miller, J. Chem. Phys. 116, 9207 (2002).
31E. Bukhman and N. Makri, J. Phys. Chem. A 111, 11320 (2007).
32B. B. Issack and P.-N. Roy, J. Chem. Phys. 123, 84103 (2005).
33B. B. Issack and P.-N. Roy, J. Chem. Phys. 126, 24111 (2007).
34B. B. Issack and P.-N. Roy, J. Chem. Phys. 127, 54105 (2007).
35B. B. Issack and P.-N. Roy, J. Chem. Phys. 127, 144306 (2007).
36A. L. Kaledin and W. H. Miller, J. Chem. Phys. 119, 3078 (2003).
37Y. Tawada, T. Tsuneda, S. Yanagisawa, Y. Yanai, and K. Hirao, J. Chem.

Phys. 120, 8425 (2004).
38J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865

(1996).
39K. Hinsen, J. Comput. Chem. 21, 79 (2000).
40K. Yagi, K. Hirao, T. Taketsugu, M. W. Schmidt, and M. S. Gordon,

J. Chem. Phys. 121, 1383 (2004).
41J. O. Jung and R. B. Gerber, J. Chem. Phys. 105, 10332 (1996).
42G. M. Chaban, J. O. Jung, and R. B. Gerber, J. Chem. Phys. 111, 1823

(1999).
43L. Pele, B. Brauer, and R. B. Gerber, Theor. Chem. Acc. 117, 69

(2007).
44Y. Scribano and D. M. Benoit, Chem. Phys. Lett. 458, 384 (2008).

Downloaded 03 Mar 2011 to 129.128.168.123. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1073/pnas.0500193102
http://dx.doi.org/10.1016/0009-2614(90)87014-I
http://dx.doi.org/10.1080/00268970802258609
http://dx.doi.org/10.1080/0144235031000124163
http://dx.doi.org/10.1063/1.431514
http://dx.doi.org/10.1063/1.443766
http://dx.doi.org/10.1063/1.443766
http://dx.doi.org/10.1063/1.447637
http://dx.doi.org/10.1063/1.1777575
http://dx.doi.org/10.1146/annurev.pc.45.100194.000503
http://dx.doi.org/10.1073/pnas.14.2.178
http://dx.doi.org/10.1063/1.1674535
http://dx.doi.org/10.1063/1.442382
http://dx.doi.org/10.1063/1.466320
http://dx.doi.org/10.1146/annurev.physchem.55.091602.094429
http://dx.doi.org/10.1146/annurev.physchem.56.092503.141257
http://dx.doi.org/10.1016/0301-0104(84)80039-7
http://dx.doi.org/10.1080/00268970110069029
http://dx.doi.org/10.1088/0305-4470/39/18/020
http://dx.doi.org/10.1021/jp003712k
http://dx.doi.org/10.1063/1.478571
http://dx.doi.org/10.1021/jp809907p
http://dx.doi.org/10.1063/1.1545772
http://dx.doi.org/10.1063/1.1562158
http://dx.doi.org/10.1063/1.2965884
http://dx.doi.org/10.1063/1.3074100
http://dx.doi.org/10.1063/1.3132224
http://dx.doi.org/10.1039/b820785b
http://dx.doi.org/10.1063/1.3155062
http://dx.doi.org/10.1063/1.3155062
http://dx.doi.org/10.1063/1.1472518
http://dx.doi.org/10.1021/jp0721907
http://dx.doi.org/10.1063/1.2004947
http://dx.doi.org/10.1063/1.2423019
http://dx.doi.org/10.1063/1.2755963
http://dx.doi.org/10.1063/1.2786456
http://dx.doi.org/10.1063/1.1589477
http://dx.doi.org/10.1063/1.1688752
http://dx.doi.org/10.1063/1.1688752
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1002/(SICI)1096-987X(20000130)21:2<79::AID-JCC1>3.0.CO;2-B
http://dx.doi.org/10.1063/1.1764501
http://dx.doi.org/10.1063/1.472960
http://dx.doi.org/10.1063/1.479452
http://dx.doi.org/10.1007/s00214-006-0132-2
http://dx.doi.org/10.1016/j.cplett.2008.05.001


094110-10 Wong et al. J. Chem. Phys. 134, 094110 (2011)

45Y. Scribano, D. M. Lauvergnat, and D. M. Benoit, J. Chem. Phys. 133,
94103 (2010).

46K. G. Kay, Chem. Phys. 322, 3 (2006).
47C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics (Wiley and

Hermann, Paris, 1977).
48R. Gelabert, X. Giménez, M. Thoss, H. Wang, and W. H. Miller, J. Phys.

Chem. A 104, 10321 (2000).
49B. R. Johnson, Chem. Phys. 2, 381 (1973).
50C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).
51J. S. Binkley, J. A. Pople, and W. J. Hehre, J. Am. Chem. Soc. 102, 939

(1980).
52G. H. Peslherbe and W. L. Hase, J. Chem. Phys. 104, 7882 (1996).
53M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J.

H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus,
M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993).

54W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, J. Chem.
Phys. 76, 637 (1982).

55G. C. Carney, L. L. Sprandel, and C. W. Kern, Adv. Chem. Phys. 37, 305
(1978).

56J. M. Bowman, J. Chem. Phys. 68, 608 (1978).
57J. M. Bowman, K. M. Christoffel, and F. L. Tobin, J. Phys. Chem. 83, 905

(1979).
58K. M. Christoffel and J. M. Bowman, Chem. Phys. Lett. 85, 220

(1982).
59S. Carter, J. M. Bowman, and N. C. Handy, Theor. Chem. Acc. 100, 191

(1998).
60E. R. Davidson, J. Comput. Phys. 17, 87 (1975).
61E. R. Davidson, Comput. Phys. Commun. 53, 49 (1989).
62C. W. Murray, S. C. Racine, and E. R. Davidson, J. Comput. Phys. 103,

382 (1992)

Downloaded 03 Mar 2011 to 129.128.168.123. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3476468
http://dx.doi.org/10.1016/j.chemphys.2005.06.019
http://dx.doi.org/10.1021/jp0012451
http://dx.doi.org/10.1021/jp0012451
http://dx.doi.org/10.1016/0301-0104(73)80013-8
http://dx.doi.org/10.1103/RevModPhys.23.69
http://dx.doi.org/10.1021/ja00523a008
http://dx.doi.org/10.1063/1.471504
http://dx.doi.org/10.1002/jcc.540141112
http://dx.doi.org/10.1063/1.442716
http://dx.doi.org/10.1063/1.442716
http://dx.doi.org/10.1002/SERIES2007
http://dx.doi.org/10.1063/1.435782
http://dx.doi.org/10.1021/j100471a005
http://dx.doi.org/10.1016/0009-2614(82)80335-7
http://dx.doi.org/doi:10.1007/s002140050379
http://dx.doi.org/10.1016/0021-9991(75)90065-0
http://dx.doi.org/10.1016/0010-4655(89)90147-1
http://dx.doi.org/10.1016/0021-9991(92)90409-R

