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Comparative studies of implementations of the controlled NOT quantum gate operation using
vibrational states of ammonia as the qubit states are presented. The quantum gate operations are
realized using tailored laser pulses, which are calculated using a combined approach of optimal
control theory and the multiconfiguration time-dependent Hartree method. We compare results
obtained with a reduced model of ammonia with three degrees of freedom !all N–H bond distances
fixed" to those obtained with a full six-dimensional model. In our study, the optimal laser pulses of
both models induce similar underlying physical mechanisms while the gate quality within the
reduced model !!98%" is much higher than within the six-dimensional model !#80%".
© 2009 American Institute of Physics. $DOI: 10.1063/1.3168438%

I. INTRODUCTION

In recent years, optimal control theory !OCT" has gained
growing interest, theoretically and experimentally, as a
method for obtaining tailored laser pulses to manipulate the
dynamics of quantum systems.1–8 The ability to influence the
system’s dynamics in a controlled manner opens a wide
range of applications, such as the optimization of product
channels in chemical reactions or spectroscopic studies of
!otherwise" hidden transitions through selectively suppress-
ing or enhancing the population of states.9 In particular, de
Vivie-Riedle and Tesch10 proposed the use of OCT for
implementing quantum gate operations using vibrational
modes of molecules. Several theoretical publications fol-
lowed this suggestion, most of them utilizing either
diatomic11–14 molecules or reduced dimensionality poly-
atomic models, e.g., acetylene10,15,16 and ammonia.17 For ex-
ample, in Ref. 17, a two-dimensional model of ammonia,
covering the symmetric bending and asymmetric bending
modes, has been utilized to implement quantum gate
operations.

The main challenge in theoretical as well as in experi-
mental studies is to find the optimal laser pulse that leads to
the desired outcome. Several numerical methods, such as
iterative and genetic algorithms,18–20 have been employed to
achieve this goal, while in experiments usually only genetic
algorithms are used. For theoretical studies, the main diffi-
culty arises from the fact that most algorithms require re-
peated and explicit solution of the time dependent
Schrödinger equation !TDSE" for the system. This is only
possible for small systems with a few degrees of freedom
!DOF". For larger systems, such as molecules with many
DOFs, this is difficult or even impossible, if direct methods
for solving the TDSE are applied. Nevertheless, there have

been several experimental as well as theoretical studies in
obtaining optimal laser pulses for polyatomic molecules.
Within the theoretical studies, however, one is usually lim-
ited to treating only a subsystem of the complete molecule
exactly or to use effective models of lower dimensionality.
This immediately raises the question whether such approxi-
mate descriptions of large molecules can serve as model sys-
tems to predict the optimal pulses and the optimization out-
come with sufficient accuracy to serve as a starting point for
experimental studies or to interpret experimental results.
Comparative studies of model systems with and without ap-
proximations can answer this question.

A way to overcome the numerical drawback of solving
the TDSE for large systems is the application of approximate
methods such as the multiconfiguration time-dependent Har-
tree !MCTDH" method.21–24 Within the MCTDH approach,
the multidimensional wave function is approximated with a
set of low-dimensional but time-dependent basis functions,
as opposed to time-independent basis functions used in stan-
dard methods, which are defined only in a subset of the sys-
tems DOF !for a review see, e.g., Ref. 23". Within the
MCTDH approach, propagating the wave function requires
much less memory and computation time for systems with
multiple DOF. In addition, as a variational method, MCTDH
converges toward the exact wave function as more time-
independent basis functions are taken into account. There-
fore, the accuracy of a wave function can be readily checked.

In the present paper, we use the combination of OCT and
MCTDH16,25 to investigate the implementation of quantum
gate operations using vibrational states of ammonia as the
qubit basis. Ammonia has been suggested previously17 as a
potential candidate molecule for quantum computing based
on a reduced two-dimensional model. In particular, we com-
pare results obtained with a reduced model containing only
three relevant DOF to a model comprising all six internal
DOF of ammonia. This allows us to assess the use of a
reduced dimensional model to predict the controllability of a
full dimensional model !for the vibrational modes".
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The paper is organized as follows: In Sec. II we briefly
review MCTDH and OCT and in Sec. III the model system is
introduced. In Sec. IV, the numerical calculations are pre-
sented and discussed. A brief summary and future outlook
are given in Sec. V.

II. THE OCT-MCTDH APPROACH

A. Combining OCT and MCTDH

The equation of motion !EOM" of a quantum mechanical
state is given by the TDSE, i.e., the evolution in time of a
given state &"' is governed by the system Hamiltonian H,
which, in general, may be time dependent. Treating the in-
teraction of the system with an external light source semi-
classically and within the dipole approximation, the TDSE
reads !# is set to unity throughout the paper"

#

#t
&"!t"' = − iH!t"&"!t"' = − i!H0 − $E!t""&"!t"' , !1"

where H0 is the Hamiltonian of the unperturbed system, $ is
the dipole operator, and E denotes the electric !laser" field.

Given an initial state &"0'= &"!t0"' at the initial time t0
and the system Hamiltonian !i.e., in particular the electric
field", one usually seeks to calculate the system state at some
later time t! t0. For notational convenience we set t0=0 in
the following. On the contrary, within OCT one is interested
to find the electric field that would drive the system state to
a desired outcome, i.e., to maximize the expectation value of
a given target operator Ô at a given time T!0, where Ô is
positive semidefinite. The target operator could, for instance,
be a projection onto a given target state or a product channel
of a chemical reaction. In order to find the electric field that
maximizes the target, one defines a control functional J for
example as

J!E,T" = ("!T"&Ô&"!T"' − %)
0

T

dt
!E!t""2

S!t"

= J1!E,T" − J2!E,T" . !2"

The control functional given in Eq. !2" consists of two parts:
J1 to maximize the expectation value of the target and J2
penalizing for the overall field strength. Here % serves as a
penalty factor and S!t" denotes the shape function that can be
used to enforce smooth pulse envelopes. The control func-
tional given in Eq. !2" does not contain any side conditions.
Often one adds a third term J3 to ensure that the system state
evolves according to the TDSE $this is implicitly assumed in
Eq. !2"%, but also further constraints, e.g., on the field,26 may
be applied. In the present case we used a modified J1 in order
to account for multiple targets Ôi, which can be optimized by
defining J1 as a sum over targets, i.e., as

J1!E,T" = *
i

("i!T"&Ôi&"i!T"' . !3"

Variation of the control functional Eq. !2" with respect to
E!t" leads to an expression for the optimal field,

E!t" = −
S!t"
%

*
i

Im(&i!t"&$&"i!t"' , !4"

where &&i!t"' is the backward propagated ith target state,
which evolves according to the TDSE !1" with the initial
condition &&i!T"'= Ôi&"i!T"'. Note that the right hand side of
Eq. !4" also contains the field as part of the time-evolution
operators acting on the system states. As a consequence, the
optimal field E has, in general, to be obtained iteratively by
successive propagations of the state vectors. Starting with an
initial guess, the field is then constantly improved over the
iterations. A number of algorithms, many of them monotoni-
cally convergent, has been proposed to most effectively ob-
tain the optimized field.3,4,27,28

All of the proposed algorithms, however, involve solving
the TDSE multiple times, which, as mentioned in the intro-
duction, can be numerically very demanding or even impos-
sible. Wang et al.25 therefore proposed the use of the
MCTDH approach to approximately solve the TDSE. One of
the advantages of the MCTDH ansatz is that the quality of
the approximation can be chosen almost arbitrarily. In Ref.
16, it was shown that monotonic convergence of the control
functional is achieved for sufficient accuracy of the state vec-
tor. Within the MCTDH ansatz the wave function is approxi-
mated as

&"!t"' # *
i1

N1

*
i2

N2

¯*
iM

NM

Ai1,i2,. . .,iM
!t"+

j
&'ij

!qj,t"' . !5"

The state vector &"' is expressed in terms of time-dependent
basis functions &'ij

!qj , t"', the so-called single-particle func-
tions !SPFs", which are exclusively defined in single !or a
few" modes with coordinates qj, and the time-dependent co-
efficients A. The Nj therefore denotes the number of SPF
used in the jth mode. The fact that the SPFs are time depen-
dent allows for the use of a small number of coefficients !i.e.,
small Nj" such that the number of coefficients is usually
much smaller than in standard methods. At the price, how-
ever, that now a set of coupled EOM for the coefficients as
well as the SPF has to be solved !see, e.g., Ref. 23". Inserting
Eq. !5" into Eq. !4" leads to an expression for the electric
field within the MCTDH approach.

B. Implementation of OCT-MCTDH

The basic implementation of OCT into the Heidelberg
MCTDH software package has been described
previously.16,25 We have now implemented a number of ad-
ditional features into the OCT-MCTDH software relative to the
previous versions. In particular, we ported the script that con-
trols the iterative propagations to Python. We provide mod-
ules for basic parsing and wrapping of the input and operator
files which allow reading, writing, and manipulation of input
data. The modular structure of the optimal control script
furthermore allows inclusion of future modules that may
execute different algorithms such as genetic algorithms or
algorithms that impose constraints !filters" on the field.
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Our implementation now uses definitions of analytic ex-
pressions for the initial guess field, the shape function S $cf.,
Eq. !2"%, etc. In particular, all analytic one-dimensional func-
tions implemented in the MCTDH operator library can be
used to define time-dependent functions used in the optimal
control algorithms. This also includes sampled data. Similar
to operators, different functions can be defined in the opera-
tor file and addressed via a user-defined label.

For target states !as opposed to target operators" we pro-
vide an option to use time-dependent overlaps as suggested
by Zhu and Rabitz29 to calculate the field. Furthermore, ad-
ditional data may be written to output files, such as the time-
dependent dipole matrix element $cf., Eq. !4"% or the time-
dependent overlaps and target populations. We provide
implementation for MCTDH version 8.4. We hope that our
code will be made available as part of one of the future
releases of the Heidelberg MCTDH software package.

III. MODEL SYSTEM

The choice of the set of coordinates to represent a poly-
atomic molecule is in many cases not an easy task and usu-
ally is highly adapted to the system under consideration.
Several sets of coordinates have been used for ammonia and
similar molecules !cf., Ref. 30 for a review". Usually, this
leads to rather complicated and numerically problematic ex-
pressions for the kinetic energy operator. Recently, Gatti and
co-workers published30,31 a general but compact expression
for the kinetic energy operator in curvilinear coordinates and

applied it—among other polyatomic molecules—to a num-
ber of tetra-atomic molecules such as HONO, HFCO, H2CS,
and NH3.30–32

In the present contribution, we restrict ourselves to the
description of the internal DOF of the ammonia molecule,
i.e., we do not take into account global rotations of the mol-
ecule. This limits, of course, the comparability of our results
to experimental findings, as we “choose” a fixed orientation
of the molecule in the laboratory system and a polarization
of the laser field. Using the formalism of Gatti and co-
workers for ammonia, the set of coordinates involves the
three distances Ri of the hydrogen atoms to the nitrogen
atom, two bond angles (i, and one dihedral angle ' as de-
picted in Fig. 1. The kinetic energy operator then reads32

T = − *
i=1

3
Mii

2
#2

#Ri
2 − *

i=1

2 ,Mi3)i- #2
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#)i
ui
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FIG. 1. Body-fixed coordinates of NH3.
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with )i=cos (i, ui=sin (i, and Mij being the matrix elements
of the inverse-mass matrix

M =0
1

mH
+

1
mN

1
mN

1
mN

1
mN

1
mH

+
1

mN

1
mN

1
mN

1
mN

1
mH

+
1

mN

1 . !7"

Here mN and mH denote the masses of the nitrogen and hy-
drogen atoms, respectively.

Note, that the kinetic energy operator, Eq. !6", is calcu-
lated for a volume element dV=dR1dR2dR3d(1d(2d', which
results in additional potential terms !cf., Ref. 31". For the
present calculations, we used an accurate potential energy
surface !PES" and dipole surfaces for the electronic ground
state that have been recently published.33,34 While it was pos-
sible to use the PES as it is !except for a change in coordi-
nates", it was necessary to fix the orientation of the
molecule—hence the orientation of the dipole—with respect
to the orientation of the polarization of the laser field. Oth-
erwise global rotations of the molecule would have to be
taken into account, too. For this purpose, we projected the
dipole onto the normal vector of the plane spanned by the
three hydrogen atoms !linear configurations are outside the
sampled area". This results in an effective dipole surface with
strong transition dipoles between states of the inversion
mode.

In the following we compare results obtained with a re-
duced, three-dimensional !3D", model which was obtained
by setting the three distances to their equilibrium values of
1.01 Å, i.e., the three stretching modes are removed from the
model system, to the full six-dimensional !6D" model of am-
monia. Accordingly, the model Hamiltonian of the reduced
system is obtained from Eq. !6" by setting to zero all terms
containing a differential operator with respect to one of the
distances Ri. The exact 3D Hamiltonian can be obtained us-
ing the procedure discussed by Gatti and Iung,35 but the
model Hamiltonian used here provides sufficiently accurate
results, see Sec. IV.

IV. RESULTS AND DISCUSSION

As mentioned above, Tesch and de Vivie-Riedle10 pro-
posed the use of vibrational DOF of polyatomic molecules as
the physical basis and the use of tailored laser fields to per-
form quantum gate operations. This requires the definition of
states to represent the basic units of quantum information,
the qubits, within the set of all vibrational states of the mol-
ecule. In principle, any two orthogonal states of a quantum
system can be labeled as &0' and &1', thus defining a qubit.
For the generalization to n qubits one defines the qubits
within different DOF of the system under consideration, e.g.,
as spins of different particles, to be able to manipulate and
measure the qubits independently from each other. This then
leads to a subspace spanned by 2n basis states embedded in
the complete system.

A. The qubit system

In the present case, the qubits are defined in different
vibrational modes of the ammonia molecule. In particular,
for the two-qubit operations, we define the qubits as excited
states within the inversion and the asymmetric bending
modes while keeping all other modes in the ground state.
This choice of qubits also allows us to switch easily to a
reduced dimensionality model. The details of the four states
spanning the two-qubit systems, used in Sec. IV B, are given
in Table I. Note that, of course, the quantum numbers asso-
ciated with stretching modes do not apply for the 3D model.

The first qubit labels states from the asymmetric bending
mode, while the second qubit labels excited states within the
inversion mode with quantum numbers as outlined in Table I.
Note that the quantum numbers +3

l3 and +4
l4 for asymmetric

stretching as well as asymmetric bending each comprise two
degenerate modes with li being the quantum number for the
respective vibrational angular momentum.33,39 The qubit sys-
tem defined in Ref. 17 has been defined using states with
more quanta of excitation in both the asymmetric bending as
well as the inversion mode. As pointed out in Ref. 17 defin-
ing the set of qubits starting in the ground state can lead to
difficulties for quantum gate operations like the Hadamard
gate. On the other hand, it becomes more and more demand-
ing to propagate higher-lying vibrational eigenstates with

TABLE I. Qubit definitions and selected states with calculated !Calc." as well as observed !Obs." state energies relative to the ground state within the 3D and
6D models of ammonia.

Qubit state Breath. +1 Inv. +2
p Stretch. +3

l3 Bend. +4
l4

Energy !cm−1"

Calc. 3D !this work" Calc. 6D !this work" Calc. 6D !Ref. 33" Obs. Ref. !obs."

&00' 0 1+ 00 00 903.07 933.12 932.50 932.43 36
&01' 0 2− 00 00 1922.57 1882.80 1882.13 1882.18 37
&10' 0 1+ 00 11 2537.16 2539.79 2540.50 2540.53 38
&11' 0 2− 00 11 3593.98 3502.56
¯ 0 0− 00 00 1.79 0.79 0.79 0.79 36
¯ 0 2+ 00 00 1548.81 1596.70 1597.46 1597.47 37
¯ 0 3+ 00 00 2454.31 2383.06 2384.15 2384.15 38
¯ 0 0− 00 11 1668.73 1626.47 1627.40 1627.38 37
¯ 0 2+ 00 11 3183.74 3188.92
¯ 0 3+ 00 11 4137.64 4007.76
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sufficient precision within MCTDH as more SPF are needed.
The present choice of qubits constitutes a compromise be-
tween these considerations.

The vibrational eigenstates have been calculated using
the improved relaxation32 option of the MCTDH software,
which prepares the initial wave functions in MCTDH form
according to Eq. !5". For details of the setup used see Tables
II–IV for the primitive grid of the 3D and 6D models, re-
spectively. The PES and the effective dipole surface have
been fit using POTFIT !Ref. 23" from the MCTDH software
package. This became necessary since different internal co-
ordinates have been used in Refs. 33 and 39. We used the
correlated weight option with a cutoff at 20 000 cm−1 and
using 15 iterations of optimization. The root-mean-square
error of this setup for the 6D model has been 14.7 cm−1 for
the PES in the relevant region. The dipole surface has been
fit without the correlated weight option resulting in a root-
mean-square error of 3.08*10−3 D. Of course, better fits are
possible by taking into account more natural potentials, how-
ever, this significantly slows down the propagations using
MCTDH as more operator terms would have to be evaluated.
For the 3D model, the root-mean-square-errors for the PES
and the dipole surface have been obtained as 2.85 cm−1 and
2.32*10−6 D, respectively.

The differences between the calculated energies of this
work and those obtained from Ref. 33, see Table I, are prob-
ably due to the approximations made using POTFIT. Small
errors can also be assigned to the approximations made by
representing the state vector in MCTDH form and the primi-
tive grid !cf., Table II". In general, the eigenenergies obtained
with MCTDH using the setup shown in Table III are within a
few wave numbers of those given in Ref. 33, where the dif-
ferences become larger for higher-lying eigenstates above
3000 cm−1.

B. Controlled NOT gate

The controlled NOT !CNOT" gate is defined as a two-
qubit operation in which a target qubit is to be flipped when
the control qubit is 1, otherwise, the states are to be left
unchanged, i.e.,

&00' → &00'
&01' → &01'
&10' → &11'
&11' → &10' .

!8"

Here the first qubit serves as the control while the second
qubit serves as the target. For the choice of qubits used in the
present work, see Table I, the bending DOF serves as the
control bit while the inversion mode is the target. The CNOT
operation, Eq. !8", constitutes a multitarget optimization
problem10 for which the optimal field is determined accord-
ing to Eqs. !3" and !4".

C. 3D-ammonia

In the following, we present results obtained with the
reduced 3D model of ammonia. The algorithm has been
started from an initial guess field of the form

Eguess!t" = E0 sin!,guesst"sin2--t

T
. , !9"

with E0=308.5 MV /m, T=1 ps, and ,guess2962 cm−1,
where the frequency ,guess has been chosen according to the
energy difference between the &11' and &10' states for the 6D
model, see Table I. The penalty factor has been set to %0
=3.782*10−12 m2 /V2 s=5.0 a.u., while the pulse envelope
has been set to S!t"=sin2!-t /T". The control algorithm con-
verged after 100 iterations !.J#10−4 for two subsequent
iterations" yielding an average target population of 99.2% as
shown in Fig. 2. Note that the graph for J1 in Fig. 2 accounts
for the sum of the populations of all targets so that J1=4

TABLE III. Settings used for the MCTDH and POTFIT calculations for 6D-
ammonia.

Combined modes

SPF
Natpot basis

potential and dipoleRelaxation Propagation

R1, R2 35 8 10
(1, (2 35 18 Contracted
', R3 35 12 10

TABLE IV. Settings used for the MCTDH and POTFIT calculations for 3D-
ammonia.

Modes

SPF
Natpot basis

potential and dipoleRelaxation Propagation

(1 15 9 12
(2 15 9 12
' 15 9 Contracted

0 20 40 60 80 100
Iterations

0

1

2

3

4

J(
E
,T
)

J1 (Population)
J2 (Field)
J1-J2

FIG. 2. Control functional as a function of iterations for the 3D model of
ammonia !J1=43100% population transfer for each target".

TABLE II. Primitive grid used for the MCTDH calculations.

Coordinate Range Grid points Primitive basis

Ri 0.66–1.48 Å 15 Harmonic oscillator
cos!(i" /0.99 to 0.5 18 Sine
' 0.8–5.48 rad 32 Harmonic oscillator
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would correspond to 100% population transfer for each of
the four targets.

In Fig. 3, the optimal electric field after 100 iterations of
the OCT algorithm for the CNOT gate is shown together
with its XFROG trace.40 The XFROG trace has been calcu-
lated as

IXFROG!,,t" = 4)
−0

0

d1E!1"G!t − 1"e−i,142

, !10"

with G being the so-called gate function which acts as a
window to select parts of the signal around time t. In this
case we chose G!t"=exp!−t2 /222" as a standard Gaussian
with a width 2#108.8 fs. This particular choice of G!t" has
been made to have a sufficiently broad gate function that
covers several of the relatively few oscillations of the field
while maintaining sufficient resolution in the time domain.
The optimization within the 3D model yields a seemingly
complex field with several frequency components. Besides
the main contribution of the field, centered at approximately
1100 cm−1 in the frequency domain, several other contribu-
tions are visible in the XFROG trace. However, only the
main contribution corresponds near the transition frequency
between the states &10' and &11' of 1056.82 cm−1.

Figure 4 outlines the population dynamics of the states
with more than 1% population at any time during the optimal
pulse. In Figs. 4!a" and 4!b", the population dynamics are
shown for the initial states &00' and &01', respectively. One
can see that there is little population transfer out of the qubit
states. However there is a considerable transfer of population
between the states &00' and &01', which vanishes at final time
T. This is due to a strong transition dipole of 0.32 D between
those states at a frequency of 1020 cm−1.

In the case where &10' and &11' are the initial states, Figs.
4!c" and 4!d", almost a direct transition to the respective
target state can be observed. At the final time T, the popula-
tion of the target state is about 99% in both cases. As in the
discussion of Figs. 4!a" and 4!b", population transfer to
higher excited states of the inversion mode can be observed,
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FIG. 3. Optimized field !upper" and its FROG trace !lower" after 100 itera-
tions using the 3D model of ammonia.
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FIG. 4. Population of vibrational eigenstates of the 3D model of ammonia as a function of time. Curves are shown for all states with population 31%. Initial
states are !a" &00', !b" &01', !c" &10', and !d" &11'.

034101-6 M. Schröder and A. Brown J. Chem. Phys. 131, 034101 "2009!

Downloaded 16 Jul 2009 to 129.128.245.189. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



especially in Fig. 4!d", while the quantum number of the
asymmetric bending mode is preserved due to selection
rules.

It is interesting to note, however, that the frequency
components, visible around 200, 500, and 1400 cm−1 in Fig.
3, are spurious, i.e., they are not needed for performing the
gate operation. Filtering out these components with a band-
pass filter that only lets through contributions between 900
and 1200 cm−1 leads to the field shown in Fig. 5. The fil-
tered field contains a single central frequency and has a
smooth pulse envelope. The system dynamics are steered by
simply varying the field amplitude, not the frequency, to dis-
tinguish between the two competing transitions &00'→ &01'
and &10'→ &11'.

A propagation with the filtered field leaves the target
population at the final time almost unchanged compared to
propagation with the unfiltered field as shown in Fig. 6. The
average target population has been obtained as 98.7%—

about 0.5% lower than without filtering. The field part of
control functional J2 decreases from 0.170 !unfiltered" to
0.152 !filtered". It can also be observed that the transfer to
other states is reduced compared to the unfiltered field. It
should be noted that the transfer of population outside the
two-qubit system using the unfiltered field is off-resonant
with respect to the frequency components visible in Fig. 3.
With the filtered field only in Fig. 6!a" with &00' being the
initial state, some population is transferred to the asymmetric
ground state of the inversion mode during the pulse. In all
other cases, the population of states outside the two-qubit
system is below 1%.

The spurious contributions seem to be generated through
two-photon processes with a low resulting population trans-
fer. This is possible since parts of the target are identical with
the initial states, see Eq. !8". In the course of the iterations
this can lead to an accumulation of small contributions gen-
erated by weak population transfer through off-resonant tran-
sitions. The spurious frequencies appear to be located in
spectral regions between first-order transitions affecting
populated states, in this case mainly the initial or target
states. Relevant transitions near 500 cm−1 with significant
transition dipole moments within the 3D model are &11'
→ &2+,11' at 410 cm−1, &01'→ &3+,00' at 532 cm−1, and
&11'→ &3+,11' at 543 cm−1 !cf., Table I", which are slightly
below or above the spurious contribution at 500 cm−1. In
fact, for longer propagation times !5 ps", the spurious contri-
bution appears at 470 cm−1, i.e., in the center of the gap
between 410 and 532 cm−1 !not shown here". The spurious
contributions are initiated through the transitions at
532 cm−1 and especially at 543 cm−1 as small amounts of
population are transferred already with the guess field. These
contributions are then sustained through two-photon pro-
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FIG. 5. Filtered optimized field using a 3D model of ammonia.
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FIG. 6. Same as Fig. 4 but for the 3D model of ammonia using the filtered field of Fig. 3.
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cesses with zero population transfer. Removing the transi-
tions at 532 and 543 cm−1 within an exact approach using
eigenstates of the system Hamiltonian as a basis prevents the
signal at 500 cm−1 from appearing !not shown here".

D. 6D-ammonia

In Fig. 7 the optimal electric field for the CNOT gate
using the 6D model is shown. The field has been obtained
after 50 iterations of the OCT algorithm, starting from the
same initial guess field as in the 3D case and with the same
penalty factor % and pulse envelope S. The control functional
is shown in Fig. 8. J!E" rapidly grows within the first few
iterations and stagnates after about 40 iterations !.J#10−3

for two subsequent iterations".

Unlike in the previous example only a single frequency
component of optimal field centered around 960 cm−1 is vis-
ible. This frequency corresponds to the transition frequency
between the &10' and &11' states at 962.77 cm−1. As is the 3D
case, a direct transition between these states is possible
through the interaction with the electric field. Interestingly,
the field envelope is !except during the first 350 fs" quite
similar to the one for the filtered field obtained using the 3D
model while the average field strength is slightly larger !J2
=0.161".

In Fig. 9, the population of those states with a population
larger then 1% upon interaction with the optimal field is
depicted as a function of time. In general, the population
dynamics resemble those obtained with the 3D model and
the filtered field. The critical difference is that the target
population at the final time is much lower than in the previ-
ous case for the 3D model.

In Figs. 9!a" and 9!b", with &10' and &11' being the initial
states, respectively, the target population at the final time is
in both cases about 79%. Unlike in the previous example,
also a larger amount of population is transferred outside the
qubit system to the asymmetric ground state of the inversion
mode &0,0− ,00 ,00'. This contribution however almost van-
ishes at the final time.

As in the 3D case, a large amount of population transfer
between &00' and &01' is observed. This results from a rela-
tively strong transition dipole between those two states at
949 cm−1, which is very close to the transition frequency
between &10' and &11' at 962 cm−1.

In Figs. 9!c" and 9!d" the population dynamics are
shown for the initial states &10' and &11', respectively. As in
the previous case approximately 80% population has been
transferred to the target states. A small amount of population
has also been transferred to the asymmetric ground state of
the inversion mode &0,0− ,00 ,11' during the pulse, however,
this time with one quanta of excitation in the asymmetric
bending mode.

Compared to the 3D model much less population of the
target states can be achieved within the 6D model. One rea-
son for this is probably the small difference in the transition
frequencies between the states &00', &01' and &10', &11', as
well as a small difference in the respective transition dipoles.
Also the transfer to the asymmetric ground state of the in-
version mode may influence the optimization process.

It is interesting to note that within the 6D model no
spurious frequencies appeared within the optimal field. Since
the number of relevant transitions from the qubit states
within the 6D model is the same as in the 3D model due to
selection rules, the spurious contributions are likely to be
suppressed due to smaller transition frequencies. For longer
pulses with less spectral broadening !not shown here" addi-
tional frequencies also appear within the 6D model.

V. SUMMARY AND CONCLUSIONS

A combined approach of OCT and MCTDH has been
used to calculate the optimal field for performing a CNOT
quantum gate in ammonia. Results from a 3D model of am-
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FIG. 7. Optimized field !upper" and its FROG trace !lower" after 50 itera-
tions using the 6D model of ammonia.
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monia and those from a full-dimensional model including all
six internal vibrational DOF have been compared.

In the case of the 3D model, an average target population
of 99.2% could be achieved with a 1 ps pulse. This is quite
similar to the results obtained in Ref. 17 where a two-
dimensional model of ammonia is utilized, however, with
different definitions of qubit states. The obtained pulse con-
tained substantial contributions at frequencies not needed
within the optimal field. These contributions could be iden-
tified as artifacts of the control algorithm, which lead to a
much more complicated form of the pulse. Filtering out the
spurious frequencies leads to a simpler pulse, which only
slightly reduced the final target populations. Using a different
control algorithm with spectral restrictions of the field as
proposed earlier26 could be one possibility to suppress spu-
rious frequencies.

In the case of the 6D model, an average target population
of about 79% could be reached for a similar setup, i.e., the
controllability of the 6D model is lower than for the reduced
dimensionality model. One reason for this can be seen in the
relatively low difference of the transition frequencies be-
tween the states &00', &01' and &10', &11' and the respective
transition dipoles within the 6D model. That is, steering the
two competing transitions by varying the field intensity is not
as effective as in the 3D case. These circumstances therefore
would require a different choice of the qubit system and/or a
longer pulse. The pulse obtained using the 6D model has a
similar shape as the filtered pulse obtained from the 3D cal-
culation, exhibiting similar and, due to the direct transitions
to the target states, relatively simple mechanisms for popu-
lation transfer.

For universal quantum computing, Tesch and de Vivie-
Riedle suggested41 that a transition for the superposition state
must be optimized in addition to the transitions given in
Eq. !8", i.e.,

&00' + &01' + &10' + &11' →!&00' + &01' + &11' + &10'"ei',

!11"

in order to ensure a phase-correct quantum gate. A phase-
correct quantum CNOT gate has not been determined in the
present work as an accurate and reliable prediction of any
quantum gate would also require the inclusion of rotational
DOF. The primary results of this paper are the comparison
between the reduced- and full-dimensionality vibrational
models and the discussion of the origin of spurious frequen-
cies in the OCT algorithm rather than a prediction of the field
required for a CNOT gate for quantum computing.

In summary we note that we obtained relatively similar
results for the optimal pulses within the 3D and the 6D mod-
els of ammonia, which lead to relatively similar mechanisms
of population transfer. However, the final target population
has been somewhat different in both cases and using the
reduced model failed to predict the controllability of the full-
dimensional model such that a precise description of the sys-
tems under consideration seems to be essential.
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