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Pulse shaping for optimal control of molecular processes
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In this paper, a new method is proposed to design optimized control fields with desired temporal
and/or spectral properties. The method is based on penalizing the difference between an optimized
field obtained from an iterative scheme and a reference field with desired temporal and/or spectral
properties. Compared with the standard optimal control theory, the current method allows a simple,
experimentally accessible field be found on the fly; while compared with parameter space searching
optimization, the iterative nature of this method allows automatic exploration of the intrinsic
mechanism of the population transfer. The method is illustrated by examing the optimal control of
vibrational excitation of the Cl–O bond with both temporally and spectrally restricted pulses.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2187977�
I. INTRODUCTION

The use of shaped or specially designed laser pulses to
control chemical processes has received much attention
recently,1–7 partly due to the fast development of pulse shap-
ing techniques.8 With respect to controlling quantum dynam-
ics, optimal control theory �OCT� has been developed to ef-
fectively obtain the driving field which will induce the
desired quantum process.9–16 The optimal control investiga-
tion of a laser driven system can be viewed as an inverse
problem, in which rather than knowing the field and deter-
mining the final state, we now “know” the final state, and are
trying to find the field which could fulfill the desired quan-
tum process. The goals of optimal control are twofold: first,
to achieve some desired quantum process with the help of
shaped laser pulses and second, to detect the properties of the
system by analyzing the optimized pulse.

There have been two types of widely used strategies in
OCT. One is a local control scheme, where the field is ad-
justed on the fly to react to the instantaneous change of the
quantum system—this is often used in the theoretical inves-
tigations when the system Hamiltonian is known to some
extent. However, real chemical systems are often too com-
plex to have a theoretical description with sufficient preci-
sion, and it is very difficult in experiments to determine the
state of the system in real time. Moreover, the determination
of the state �measurement� will inevitably disturb the original
system. This leads to the so-called closed-loop control,
where completely new fields emerge after the previous con-
trol experiment is finished. The new fields are often deter-
mined from some stochastic algorithm, and one of the most
important is the genetic algorithm �GA�, see, for example,
Ref. 17.

A challenge for theory is to design pulses that are experi-
mentally feasible and that allow understanding and interpre-
tation of the underlying mechanisms and dynamics leading
to the successful control of molecular processes.17–26 For lo-
cal optimal control, the final fields obtained usually are very
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complex and difficult to be realized and explained. In light of
this, efforts have been devoted to reduce the complexity of
the final optimized field.19,26–28 In this paper, a new iterative
scheme using a reference field in one commonly used local
control scheme13 is introduced and utilized to obtain physi-
cally simple and well defined optimized fields. The new
scheme is presented in Sec. II, and then illustrated in Sec. III
by examining the optimal control of vibrational excitation of
the Cl–O bond with both temporally and spectrally restricted
pulses. In Sec. IV, we provide a brief conclusion and discuss
further applications of the current method.

II. THEORY

The control of desired transitions between preselected
initial and final states �state-to-state control�13 is of special
interest due to its potential applications ranging from chemi-
cal reaction channel selection21 to molecular quantum com-
puting based on rovibrational states.3,4 One of the most used
algorithms for this purpose is the one initially proposed by
Zhu et al.13 which is an extension of one due to Krotov.29

The method is based on a forward-backward iterative scheme
to improve the control field. It has been shown that this
method exhibits quadratic and monotonic convergence and
has been proven to be very efficient for state-to-state
control.19,26,30

For the control of a state-to-state transition, within the
simplest form, the goal is to maximize the following objec-
tive function:

J��i�T�,� f� = ���i�T��� f��2, �1�

in which �� f� refers to the objective state, ��i�t�� is the time-
dependent wave function, which starts from initial state ��i�
at t=0, and results by applying the external field ��t�. T is the
duration of the interaction and is usually termed as the target
time.

By taking into account constraints on the external field,
the optimal control can be reformulated as the problem of

maximizing the following objective function:
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In the right hand side of Eq. �2�, the first term is the original
objective of state transition J, the last term is to ensure that
the time evolution follows the Schrödinger equation, while
the second term represents constraints on the control field
��t�, expressed as a functional f .

In the original work of Zhu et al.,13 the functional
f���t��=�0��t�2, where �0 is a constant. Due to the fact that
only the pulse energy is constrained, the method of Zhu et al.
does not include explicit constraints on the pulse shape
and/or spectral properties of the optimized field. Therefore,
the fields obtained are often complex both in temporal shape
and spectral composition. In light of this, de Vivie-Riedle
and co-workers have proposed methods to reduce the tempo-
ral and spectral complexities of the optimized field.19,26 They
first introduced a pulse shaping function s�t� to force the
pulse to be smoothly turned on and off, i.e., f���t��
= ��0��t�2� /s�t�.26 More recently, a subspace projection
method was utilized to reduce the spectral complexity of the
final field from the OCT algorithm.19 In the direction of re-
stricting the field strength of the final optimized field, Far-
num and Mazziotti27 have introduced a trigonometric map-
ping into the standard optimal control scheme and are able to
restrict the field strength explicitly.

However, the above methods have one intrinsic problem
as to how strongly the pulse energy should be penalized, i.e.,
how large the parameter �0 should be is to some extent ar-
bitrary. With a nonzero penalization of the total energy, the
final transition objective becomes related to the penalization
parameters chosen.20,31 To overcome this difficulty, in the
investigation of quantum unitary operation optimization,4

Palao and Kosloff use a method where the difference be-
tween the field of the present iteration and the previous it-
eration �reference field� is penalized, i.e, f���t��= ��0���t�
−�ref�t��2� /s�t�, where �ref�t� is the optimized field obtained
in the previous iteration. In this scheme, the original objec-
tive of the state transition will not be affected by the second
field term, as f���t��= ��0���t�−�ref�t��2� /s�t� of Eq. �2� will
be zero upon convergence. However, this simple choice has
the problem that the final field may be very complex and
sometimes unrealistically strong, since there is no confine-
ment regarding the field strength and spectral complexity.

To overcome the above problems, we adopt the idea that
instead of choosing the field of the previous iteration as the
reference field, a new reference field ��t� is constructed
based on the previous field, with the application of a filter
function F to ensure the fulfillment of some predesigned
temporal and spectral properties. For f���t��= ��0���t�
−�ref�t��2� /s�t�, with �ref�t� as reference field, the solution of
the optimization problem, i.e., maximizing Eq. �2� with re-

spect to � f, �i, and ��t� can be readily written as
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�

�t
�i�t� = �H0 − ���t���i�t�, �i�0� = �i, �3�

i�
�

�t
� f�t� = �H0 − ���t��� f�t�, � f�T� = � f , �4�

�0

s�t�
���t� − �ref�t�� = − Im���i�� f��� f����i�� . �5�

Equations �3�–�5� can be solved iteratively with an initial
guess field with a method similar to that of Ref. 13, i.e.,

i�
�

�t
�i
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�10�

Our goal in this paper is to find an optimized pulse with
its spectral components within a predefined regime S, and
the maximum field amplitude to be less than some prese-
lected value �0. Thus, we define the functional F as F���t��
=F2�F1���t���, in which F1 is the spectral filtering,

F1�f�t�� = �
��S

F��f�t��exp�− i�t�dt , �11�

where F��f�t�� is the Fourier amplitude of f�t� at frequency
�. And F2 is defined

F2�f�t�� = f�t�, " max�f�t�� 	 �0,

�12�
F2�f�t�� = �0f�t�/max�f�t��, " max�f�t�� 
 �0,

where max�f�t�� is the maximum of f�t�.
For our purpose of obtaining an optimized field with

special temporal and spectral properties, a natural choice for
the reference field would be �ref,f

k �t�=F��i
k−1�t�� and �ref,i

k �t�
=F�� f

k�t��. However, by performing a similar analysis to that
in Eqs. �15�–�21� of Ref. 32, we find that the quadratic and
monotonic convergence of the original scheme does not in
general hold for any choice of F, i.e., the objective function
is not guaranteed to increase after each iteration. However, it
can be proven that the quadratic and monotonic convergence
does hold for two special cases: �1� when F= I, i.e., the ref-

erence field is identical to the field from the previous itera-
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tion, this corresponds to the Kosloff scheme;4 and �2� when
the reference field is a fixed field independent of the iteration
number k.

Numerically, we find that if we set �ref,f
k �t�=F��i

k−1�t��
and �ref,i

k �t�=F�� f
k�t��, the objective function starts to decrease

after a relatively large number of iterations. A careful exami-
nation shows that this problem cannot be fully resolved in
the current iterative scheme. In the current implementation,
we utilize a numerical procedure to ensure the improvement
of population transfer. We start from a guess field �guess�t� in
Eq. �6�, then �ref,f

k �t�=�i
k−1�t� and �ref,i

k �t�=� f
k�t� are used to do

the iterations in Eqs. �7�–�10�. After each iteration, we test
the final optimized field by calculating the population trans-
fer with the field F��i

k�t��. If the population transfer improves
compared with that from F��i

k−1�t��, then we proceed to the
next step. However, if the population transfer decreases in
the kth iteration, we go back one step and use the filtered
optimized field in �k−1�th iteration F��i

k−1�t�� as the new
guess field. In the new forward step �Eq. �6��, the penalty
parameter �0 is increased to be 2�0 to perform a finer search.
The process is repeated until a desired convergence criterion
is achieved.

In this paper, the results are considered converged when
�0 increases from its initial value of 1 to over 16 within ten
iterations. One iteration corresponds to a successful step in
Eqs. �7�–�10� such that the population transfer with the fil-
tered field is improved. In our calculations, we also reset �0

to be the intial value �here �0=1� after ten iterations to take
advantages of the large change of field in parameter space
when �0 is small, see Eqs. �8� and �10�. The large change in
parameter space has two advantages: first is to increase the
convergence rate if the change is within one local peak, and
the second is to allow the field to �possibly� move from one
local maximum to another local maximum in parameter
space.

III. RESULTS

To test the above scheme, we consider the optimal con-
trol of vibrational excitation in chlorine monoxide �ClO�.
The ground electronic state potential energy surface, dipole
moment, and the vibrational states are obtained with an ab
initio calculation.33 Due to the fact the ClO vibrational ladder
is quite harmonic, and has quite strong overtone transitions,
this system is a reasonable benchmark problem for testing
different optimal control algorithms. In this paper, we use the
lowest 22 vibrational levels out of 42 total bound states to
represent the ClO system, with the vibrational quantum num-
ber ranging from 0 to 21. We have tested that increasing the
number of levels or using the potential explicitly does not
affect the results shown here significantly. The objective con-
sidered is to transfer the population initially in the vibrational
ground state �=0 to vibrational excited state �=10.

In Fig. 1�a�, we present the optimized field ��t� obtained
from setting the reference field ��t�=0, i.e., we use the origi-
nal objective function suggested by Zhu et al.13 The penalty
parameter �0 is chosen to be 0.05.34 The initial guess field
here, and in all subsequent optimization, is �i

guess
=�0 sin��0t�, with �0= �E10−E0� /10 and �0=0.01 a.u. The
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pulse shaping function is chosen in this paper as s�t�
=sin2�t� /T�. Ei is the energy for ith vibrational level. The
target time T is hereafter chosen to be 1 ps, as was used in a
previous study of controlled vibrational excitation in ClO.35

The optimized population transfer is determined to be
79.1%. The corresponding power spectrum ������ is shown
in Fig. 1�b�. There is a predominant peak around the one-
photon resonance with several small peaks around the over-
tone transitions.

We now apply the scheme described in Sec. II to find an
optimized field with restrictions both in spectral bandwidth
and maximum field strength. The frequency regime S in Eq.
�11� is first set to be �0.7�0 ,1.1�0�, which includes all the
frequencies corresponding to adjacent level transitions in this
22 level system. The field amplitude is limited by setting the
maximum field strength to be �0=0.05 a.u. Thus, the field
will be rescaled according to Eq. �12� if its maximum ampli-
tude exceeds this value. We note that the frequency filtering
in Eq. �11� introduces abrupt turn on and off of the field and
to avoid this, we have applied sin2 filters in the initial and
final 10 fs of the pulse. The resulting field is shown in Fig. 2.
The population to the target level after interaction with the
optimized field is 95.7%. Although we have set the maxi-
mum allowed field strength to be 0.05 a.u., the maximum
value of final field is less than 0.04 a.u. This maximum field
strength is comparable with that from a previous study,35 but
the population transfer there is only 83.3%.

The improvement of population transfer by using the

FIG. 1. Optimized field �a� and corresponding spectrum �b� with the refer-
ence field ��t�=0. The population transfer is 79.1%.
new iterative algorithm is quite impressive. We note that we
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could decrease the penalty parameter �0 further to obtain
better population transfer when there is no reference field,
��t�=0. However, a very small �0 indicates that there is little
restriction on the pulse energy. Therefore, with a small pen-
alty parameter �0, the iterative algorithm may result in a very
strong field, since the change of field in each iteration de-
pends inversely on �0, see Eqs. �8� and �10�. Also, in the
above discussion, we have chosen to explicitly constrain the
maximum field strength, but there would be no difficulty to
constrain the total pulse energy.

The choice of frequency in Fig. 2 is based on only in-
cluding adjacent level transitions, which is intuitively the
most important mechanism. To find the most important
mechanisms beyond this, we use the field in Fig. 2 as the
initial guess field, and perform the iteration in Eqs. �7�–�10�
once, with reference field set as �ref,f

k �t�=�i
k−1�t� and �ref,i

k �t�
=� f

k�t�. This should automatically introduce the most signifi-
cant mechanism other than that in the reference field. The
spectrum of this field is illustrated in Fig. 3, and it can be
seen that the most important Fourier component outside the
range �0.7�0 ,1.1�0� is a peak around 2.6�0. This peak cor-
responds to the second-order overtone transitions, i.e.,
���→ ��+3�.

In order to assess the effects of including spectral com-
ponents corresponding to high-order transitions, we perform

FIG. 2. Optimized field with spectrum limited to �0.7�0 ,1.1�0� and maxi-
mum field strength confined to be less than 0.05 a.u. The population transfer
is 95.7%.

FIG. 3. The spectrum of the optimized field after one iteration with the field

in Fig. 2 as guess field, see text for details.
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another similar calculation, but redefine S to be
�0.7�0 ,1.1�0� plus �2.2�0 ,3.2�0�. These spectral ranges in-
clude both the ���→ ��+1� and ���→ ��+3� transitions. The
maximum field strength is kept unchanged as �0=0.05 a.u.
The final field is shown in Fig. 4. The final optimized field
has a slightly larger maximum field strength and it looks
more complex than that in Fig. 2, but the population transfer
from �0� to �10� is now 99.0% compared to 95.7% when
including only one-photon transitions.

IV. CONCLUSIONS AND DISCUSSIONS

In conclusion, the above results demonstrate that the
scheme used here can obtain optimized fields with desired
properties. Since the choice of the function F is arbitrary, it
could be generalized to other problems. For example, in Fig.
4, the optimized field has frequency components in two
ranges. However, if we reduce the two ranges to be two
points in Fourier space, then it would correspond to using
two fields with fixed frequencies to control the system. If one
could introduce the relative phase between these two fre-
quency components into the optimal control algorithm, then
the above scheme could be used to investigate coherent con-
trol problems36 in complex systems. Work in this direction is
underway.

We note that other schemes have been proposed to ob-
tain optimized pulse with both spectral and fluence con-
straints. In a recent paper,28 both frequency filtering and a
maximum field strength limitation have been introduced in a
conjugate gradient maximization procedure. Spectral and flu-
ence constraints have also been introduced with an adaptive
penalty parameter �0.37

The present results also demonstrate that achieving high
population transfer in complex systems with simple laser
fields may be feasible, as we have achieved 95.7% popula-
tion transfer from �0→ �10� for the very harmonic ClO sys-
tem with a simple and not too strong field, as shown in Fig.
2. As Rabitz et al. have shown in their optimal control tran-
sition landscapes investigations,6 all optimal control sce-
narios are perfect if there is no limitation imposed on the
form of the field. The principal idea of obtaining optimized
pulses in this paper is to use the unrestricted search, i.e., use

FIG. 4. Optimized field with spectrum limited to �0.7�0 ,1.1�0� and
�2.2�0 ,3.2�0�, and maximum field strength confined to be less than
0.05 a.u. The population transfer is 99.0%.
the field from a previous iteration as the reference field, to
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find the optimized field in a restricted parameter space. Nu-
merical results indicate that this search algorithm works very
well. The theoretical foundation of optimal control transition
landscapes in restricted parameter spaces and its relationship
to the optimal control transition landscapes in the unre-
stricted parameter space would be an interesting topic to in-
vestigate in the future.
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