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In a recent paper [D. Babikov, J. Chem. Phys. 121, 7577 (2004)], quantum optimal control theory
was applied to analyze the accuracy of quantum gates in a quantum computer based on molecular
vibrational eigenstates. The effects of the anharmonicity parameter of the molecule, the target time
of the pulse, and the penalty function on the accuracy of the qubit transformations were investigated.
We demonstrate that the effects of all the molecular and laser-pulse parameters can be explained
utilizing the analytical pulse area theorem, which originates from the standard two-level model.
Moreover, by analyzing the difference between the optimal control theory results and those obtained
using the pulse area theorem, it is shown that extremely high quantum gate fidelity can be achieved
for a qubit system based on vibrational eigenstates. © 2006 American Institute of Physics.

[DOL: 10.1063/1.2164457]

I. INTRODUCTION

The field of quantum computingl_3 has emerged as an
intriguing and exciting new research area that physicists,
mathematicians, engineers, and chemists have started to ex-
plore. In order to realize a quantum computer several prob-
lems need to be addressed: the identification of a physical
system to represent quantum bits (qubits), the maintenance
of coherence, and the implementation of mechanisms for
performing quantum logic gate operations on the qubits.
While several different physical systems have been proposed
or utilized to realize quantum computing algorithms, e.g.,
NMR,*™® recent interest has turned to using the vibrational
states of molecules to represent the qubits and tailored fem-
tosecond laser pulses to implement quantum gate
0perations.7_18 It has been shown that the vibrational, or rovi-
brational, states of molecules are reasonable candidates for
encoding quantum information and applying quantum infor-
mation processing. When using the vibrational states of a
molecule as the qubit basis, the number of available qubits is
proportional to the number of vibrational degrees of free-
dom: 3N-6 for a nonlinear molecule containing N atoms.
Current physical systems studied for molecular quantum
computing have been small gas-phase molecules for one-,
two-, and three-qubit problems. For example, there have
been theoretical explorations in model diatomics,7 12,13’14’18
C2H2,8"” NH3,12 and an experimental study for Liz.'5 Deco-
herence for molecules in the gas phase can be due to colli-
sions, coupling between vibrational and other degrees of
freedom (i.e., electronic or rotational), and, for polyatomic
molecules, resonances between vibrational modes. In gen-
eral, the number of collisions can be kept very low and the
typical lifetimes of vibrations are orders of magnitude
greater than the durations of the femtosecond pulses used to
perform the gate operations. The quantum gate operations on

“Electronic mail: alex.brown@ualberta.ca

0021-9606/2006/124(3)/034111/8/$23.00

124, 034111-1

the vibrational qubits are performed using shaped ultrashort
laser pulses, which are usually determined theoretically by
applying the optimal control theory™'®!”'* (OCT) although
other proposals have been made, e.g., time-frequency re-
solved coherent anti-Stokes Raman scattering.B’14

One of the most used algorithms within the optimal con-
trol theory as applied to molecular processes is the one de-
veloped by Zhu et al. ' Their algorithm is an extension of the
one due to Krotov.”” The method is based on a forward-
backward iterative scheme to improve the control field, and
it has been shown' that this method exhibits quadratic and
monotonic convergences. This method has proven to be very
efficient and thus is widely used when treating the problem
of steering a quantum system from an initial state to final
states,m*23 i.e., state-to-state control. Tesch and de
Vivie-Riedle® have generalized the original algorithm19 into
a multitarget formulation, which can find the optimized field
for steering simultaneously a set of initial pure states to a set
of final states. Such a generalization has direct applicability
in quantum computing, where an algorithm implemented as a
unitary transformation operating on a set of states has to be
carried out irrespective of the input. In this application, both
input and output are encoded as a superposition of these
states.'”

Using the multitarget formulation of the optimal control
theory, de Vivie-Riedle and co-workers®"' have examined
extensively quantum logic gate operations implemented for a
two-qubit model system based on vibrational normal modes
in C,H,. Their two-qubit model is based on the asymmetric
CH-stretching mode and the cis-bending mode. They have
shown that pulses can be designed to implement one- and
two-qubit operations, i.e., local and global NOT gates, Had-
amard gate, and CNOT gate, with reasonable high gate fi-
delities. Of course, in a polyatomic molecule such as C,H,,
decoherence due to coupling with other vibrational states
outside those composing the qubits is of critical importance
and it has been demonstrated that these processes can be
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suppressed by optimized laser pulses.10 A similar theoretical
calculation of tailored pulses for realizing Hadamard and
CNOT gate operation in a two-dimensional model of NHj;
has recently been published.12 The studies involving C,H,
and NH; have cast the problem in terms of wave functions.
Recently, Ohtsuki'® has formulated the design of gate pulses
using the optimal control theory within the density-matrix
formalism. The formulation allows the inclusions of relax-
ation (decoherence effects), although relaxation was ne-
glected in the initial study of 12.18 These theoretical studies
have highlighted the feasibility of using molecular vibra-
tional states for quantum computing and have addressed, or
begun to address, some of the major concerns, e.g., decoher-
ence. While many of the studies of molecular computing
have been theoretical, the experimental demonstration in Li,
of the Deutsch-Jozsa algortihm24 by Vala et al.” provides
impetus for pursuing molecular quantum computing.

The current studies of molecular quantum computing are
promising, but one primary question to ask is what would be
the best possible choice of a molecule for realizing practical
quantum computation. In a recent paper, Babikov’ has begun
to seek an answer to this question by addressing the problem
of gate fidelity (accuracy) using a diatomic molecule as a
model for performing quantum gate operations with tailored
infrared femtosecond pulses. Gate fidelity is of critical im-
portance if practical quantum computing is to be performed
since tens (or more) of sequential gate operations may be
required to implement a particular algorithm. Babikov’
showed via numerical exploration that general trends exist in
the dependence of gate fidelity on the anharmonicity of the
system and the pulse length. These dependencies can be used
as guidelines for choosing an appropriate molecular system
for implementing quantum information processing. It was
demonstrated that when all parameters are carefully chosen,
the accuracy of quantum gates based on the vibrational states
of a diatomic model could reach as high as 99.9%.

In this paper, we readdress the problem of designing
laser pulses for performing quantum logic gate operations.
We formulate the design of the laser pulse in terms of the
analytic pulse area theorem rather than in the context of the
numerical optimal control theory. By formulating the prob-
lem with the pulse area theorem, the importance of the vari-
ous molecular and laser parameters can be predicted analyti-
cally and the choice of suitable systems for molecular
quantum computing can be readily evaluated. In Sec. II A,
the optimal control theory and the pulse area theorem are
reviewed briefly in the context of creating a NOT gate. The
simple one-dimensional Morse oscillator used as a model
system is presented in Sec. II B. In Sec. III, analytical
pulse results are used to interpret different aspects of the
implementation of quantum gate operations in vibrational
systems. The power of the 7 pulse in predicting the influence
of both molecular and laser parameters is emphasized. Some
brief conclusions and discusssion are given in Sec. IV.

Il. THEORY

The two lowest-energy bound vibrational eigenstates of
the OH molecule are considered as a practical realization of
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a qubit, and a shaped external laser field is used to apply the
quantum logic gates. First, the methods for determining the
laser parameters required to perform the quantum gate op-
eration are outlined. Second, the physical system used for the
qubit is briefly introduced.

A. The NOT gate: Optimal control theory and the =
pulse

In this paper, only the NOT gate is considered explicitly.
For the NOT gate, the laser pulse must perform the following
logical operations:

NOT|0) — |1),

(1)
NOTI1) — |0).

To set up the quantum NOT gate for the simple one-
dimensional Morse oscillator system considered here, see
Sec. II B, two choices for determining the laser field are
examined: (i) a laser pulse constructed numerically via the
optimal control theory and (ii) a laser pulse determined ana-
lytically using the pulse area theorem. These two methodolo-
gies are reviewed briefly.

The goal of the optimal control theory for logical gate
operations is to find the laser pulse &(¢) that maximizes popu-
lation transfer for the two transitions of Eq. (1). The interac-
tion of the laser field with the dipole moment of the molecule
(dipole approximation) is considered in this paper. The opti-
mization of the population transfer should occur after the
time interval 7, which is commonly referred to as the target
time. Also, the optimization of the population transfer must
be achieved while constraining the total pulse energy,
Jt]e(#)|Pdt. One common way to accomplish these two goals
is to maximize the following objective functional:®

T
K= S (AP - f o)) P
k=1,2 0

T
- 2 2Rey (Wh(T)| ¢ f (Wil H, - pe(n)]
0

k=1,2
+(alan|yh(e)ydr ¢, (2)

where the sum is over the two transitions of interest. In Eq.
(2), l,b{f(t) is the time-dependent wave function for the system
driven by the laser pulse £(). ¢ and ¢j§ are the initial state
and the desired final (target) state, respectively, for the kth
transition of interest. The first term in the functional serves to
maximize the gate fidelity, which is related to the overlap of
the initial state after interaction with the field of duration 7.
The second term is a penalty term utilized to minimize the
energy of the laser field in performing gate operation. The
last term is used to satisfy the time-dependent Schrodinger
equation for molecule-field interaction. Here the penalty
term in Eq. (2) is chosen to impose restrictions on the total
pulse energy only, but other restrictions could be enforced on
the optimized field, such as frequency biasing to ensure spec-
tral simplicity. There have been various alternate choices of
the objective functional in the literature,zz’zs’26 and we
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choose the current one for its simplicity as well as its wide
applicability.
In Eq. (2), () is a penalty function

at) =

@9
s(t)’ ®)
where «; is the constant penalty factor and s(z) plays the role
of pulse envelope. The constant penalty factor «,, which is
set at the beginning of the algorithm, plays a critical role in
determining the overall yield and, also, the complexity of the
pulse.”” Low values of a(<0.1), which impose only a weak
restriction on the total pulse energy, allow high yields to be
obtained but lead to extremely complex pulses. de Vivie-
Riedle and co-workers have demonstrated”’ how the algo-
rithm can be modified to use large values of a,(=1000),
while still achieving high yields but with much simplified
pulses. In the examples considered in this paper, the constant
penalty factor ay=1 unless stated otherwise. When chosen
appropriately, the function s(r) forces the optimized field to
switch on and off smoothly.21 Here, as in Ref. 7, we use the
form s(¢)=sin?(mt/T).

The goal of determining the optimal pulse &(z) is accom-
plished by maximizing Eq. (2) with respect to 1//; Y, and
(), which results in the following system of coupled equa-
tions:

B0 = Ho - meOIAG, Uh0)= k=12, @)

m%%mﬁ%—wmwm,%mzﬁkﬂﬂ,w

and

e)=- D1l S OO EOlED]. ©

fiayy k=1,2

The system of coupled equations, Egs. (4)—(6), is solved nu-
merically using the iterative method proposed by Zhu et al.”

Optimal control theory has proven very successful in
designing pulses for maximizing population transfer in a va-
riety of molecular systems,&lg’21 and the construction of ex-
perimentally feasible pulses has also been highlighted.ﬂ’22
However, difficulties arise in the interpretation of the physi-
cal mechanism for controlled population transfer as the in-
terference of a large number of optical pathways can contrib-
ute to the control. Therefore, one cannot readily determine
how laser parameters, e.g., pulse length, intensity, frequency,
and/or molecular properties (e.g., transition dipole moments
and energy level spacing), will affect the excitation process.
To better understand these effects, we constructed the logic
gate using an analytical 7 pulsezg_3 ! based on the pulse area
theorem rather than a numerical pulse determined via the
optimal control theory. We will focus on the original 7 pulse
results from a two-level model, although more general o
pulses beyond the pulse area theorem have been developed
for multilevel syst<3ms.30’31 It is demonstrated that this simple
7 pulse, along with the pulse area theorem, is able to clarify
most of the underlying mechanism in the quantum NOT gate
operation.
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Here we consider a simple laser field of the form
e(1) = gys(t)sin(wyt), (7)

where there is a single frequency component w, equal to the
energy difference between the two qubit states, E;—E; g iS
the maximum laser field strength; and the pulse envelope s(z)
has the same form as for the optimal control theory field.

The pulse area theorem states that within the rotating
wave approximation (RWA) and for an on-resonance excita-
tion frequency, the final transition probability for a two-level
system initially in one state will only be determined by the
area of the pulse, A. From this theorem, the final population
transfer P is

P =[(y(D)|¢p)|* = sin*(A72), (8)
where
T
A:J Mo1€08(t)dt, )
0

with ug; being the transition dipole moment connecting the
two states of interest. If we assume that the optimized pulse
is of the form given in Eq. (7), then the pulse area A
=gopmT/2. For a pulse with an area 7, 100% of the popu-
lation will be transferred from the initial state to the final
state. Therefore, the field strength g, for the NOT gate is
determined analytically from the condition that the pulse
area should be m, i.e., 8g=27/(Ty,). It has been proven
that within the RWA, the 7 pulse is the globally optimized
field for a two-level system. Note that the 7 pulse is also the
initial trial field for the optimal control algorithm.

B. The molecular model

The ground-state potential for the OH diatomic is ap-
proximated by an analytic Morse oscillator of the following
form:

V(r)=-D+D[e™ ) — 1T, (10)
The eigenvalues of the Morse oscillator are given by
E,=—-D+ ( +l> A( +l>2 (11)
V= wlv+ vt )

where w is harmonic frequency,

wear] 2, (12)
m

and A is the anharmonicity parameter,

a2

:%'

(13)

The standard set of Morse parameters for the OH diatomic
are D=0.1994 hartree, r,=1.821 bohr, and a=1.189 bohr™!,
and thus the harmonic frequency  is 3964 cm™' and the
anharmonicity A is 89.76 cm™!. In addition to this standard
OH model, the effects of both increased and decreased an-
harmonicity, i.e., larger and smaller A, are considered in Sec.
1.
The dipole moment function has the analytic form
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u(r) = pwore™"o, (14)

with un=3.088 a.u. (7.848 D) and r;,=0.6 bohr.

The above potential is represented by a one-dimensional
grid and the eigenvalues and eigenvectors are calculated with
the window operator method™ and a recursive scheme,34 re-
spectively. The eigenenergies obtained from the grid agree
with the analytical results in Eq. (11). The transition dipole
moments, w;={i;|u(r)|¢;), are evaluated numerically from
the eigenvectors and the dipole moment, Eq. (14). The per-
manent dipole moments are neglected in all calculations.

Unless otherwise stated, only the first five vibrational
states (0<v=<4) are included in the calculations and this
five-level model has been used to approximate the full vibra-
tional manifold for OH, as well as for the other model sys-
tems with different anharmonicities. The eigenstates will be
termed as i) for the ith eigenstate. The qubit is chosen to be
formed by the ground state |0) and first excited vibrational
state |1).

We note here that the second-order procedure in Ref. 19
for the optimal control algorithm has been utilized, i.e., the
term related with [w(r),Hy]=u(r)Hy—Hyu(r) has been in-
cluded in our calculations, see Eqgs. (48)—(51) of Ref. 19.
Although this term has been introduced in Ref. 19, its exact
form was not given. For the OH model, defined by Egs. (10)
and (14), it takes the following form:

[u(r),Ho]ﬁe-”foH”’T"”}‘? 1+i}. (15)

P 2
ar ry 2rg

In our discrete level representation, the effect of this term is
taken into account by introducing an effective dipole cou-
pling term du;;=(iAt/2){Ys{[ m(r) . Holl b))

To explain the decrease of gate fidelity with the decrease
in anharmonicity, see Sec. III, it is necessary to go beyond
the two-level system. If the anharmonicity is large, the sys-
tem is effectively a two-level one as all transitions, except
that between the qubit states, are far off resonance. When the
anharmonicity decreases, the effects of other states have to
be considered and here a three-level system is used to ap-
proximate the effect of anharmonicity. As long as the pulse
length satisfies 7> (27/ w,), i.e., the adiabatic condition is
justified, one can use the RWA. For typical vibrational en-
ergy spacings (100—5000 cm™), the adiabatic condition will
be fulfilled unless one wishes to use ultrafast pulses for ex-
citation, i.e., pulse durations of less than 100 fs. The effective
Hamiltonian for a three-level system using the RWA is

| 0 Ho1805(2) 0
H= 5 /.L()]S()S(t) 0 Mlzgos(t) . (16)
0 /.L]zsos(t) —4A

In order to simplify the problem, the model is only extended
to a three-level system since from the numerical results
shown in Ref. 7 and theoretical considerations, the next vi-
brational state |2) will have the most significant (detrimental)
effect on the |0) —|1) and |1) — |0) excitation processes. Ac-
cording to Eq. (11), under the RWA, the detuning of the vth
state scales as 2(v—1)A, so v=2 will have the smallest de-
tuning. The detuning of other states will increase with an
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FIG. 1. The Fourier components of the pulse obtained via the optimal con-
trol theory algorithm for the OH molecule.

increase of the state number, and thus their roles will be
much less significant.

lll. RESULTS AND DISCUSSION

We first compare the optimal control theory results and
the 7 pulse predictions for the NOT gate as implemented for
the OH molecule. The target time T is set to 750 fs, as was
done in Ref. 7. Our numerical results for OH, as obtained
using the optimal control theory algorithm,7 are in quantita-
tive agreement with the original work. For the NOT gate
shown in Fig. 2 of Ref. 7, the fidelity is given as 0.9948,
while our result is 0.9947. The small difference could be
attributed to minor differences between the numerical param-
eters and propagation methods used. The results obtained
using the five-level model of OH have been tested by com-
paring them with those obtained using direct wave-packet
propagation and/or a full 22-level model and good agreement
between the five-level model and these more sophisticated
models is found.

The field strength defined from Eq. (9) for the 7 pulse is
0.005 461 a.u., which is roughly in accord with the maxi-
mum field strength shown in Fig. 2 of Ref. 7. The gate fidel-
ity using the 7 pulse prediction for the field in an exact
calculation is determined to be 0.989 64, and thus the opti-
mal control theory algorithm only improves the fidelity mar-
ginally compared with the 7 pulse. Also the maximum fre-
quency components of the optimized field are nearly on
resonance with wy; see Fig. 1, which shows the power spec-
trum of the field resulting from the OCT calculation. From
this example, it is clear that the 7 pulse captures most of the
physical signatures of the optimized pulse, at least for the
model OH system. Although the resemblance between the
optimal control theory and 7 pulse results is to be expected
for an anharmonic system such as OH, the analytic nature of
the 7 pulse, or more generally, the pulse area theorem, pro-
vides direct physical insight into the roles of different mo-
lecular and laser parameters in quantum gate operations.

The dependence of the gate fidelity on the anharmonicity
parameter is one of the principal results in Ref. 7. Thus, the
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FIG. 2. Fidelity of the NOT gate as a function of the anharmonicity param-
eter of the model system. Results are illustrated for the 7 pulse (circles) and
optimal control theory (squares). The inset shows an expanded view of the
high-anharmonicity regime.

ability of the = pulse to predict this dependence is consid-
ered. The target time is again set to be 750 fs. The gate
fidelities obtained as a function of the anharmonicity param-
eter using the analytic 7 pulse predictions for the field are
shown in Fig. 2, along with the numerical optimal control
theory pulses for comparison. For the smallest anharmonici-
ties of A=10, 15, and 20 cm™!, a seven-level model was
utilized to ensure that the maximum population of the high-
est state was below 0.001. From Fig. 2, the dependence of
the gate fidelity on anharmonicity, i.e., decrease of fidelity
with decrease of anharmonicity parameter, can be repro-
duced qualitatively by the 7 pulse. However, the gate fideli-
ties obtained via a single frequency 7 pulse are not as high,
i.e., less than 90%, in the low-anharmonicity regime below
40 cm™!, where using OCT significantly improves the gate
fidelity. In the range of 50 cm™' <A<110 cm™' suggested
by Babikov’ as appropriate for achieving the high fidelities
necessary for quantum computation, the fidelities from the 7
pulse prediction are almost as good as the results obtained
using the optimal control theory algorithm.

The use of the analytic theory allows a direct qualitative
estimate of the anharmonicity regime where the optimal con-
trol theory will significantly improve the 7 pulse prediction,
which in turn means the anharmonicity regime where quan-
tum computation is difficult, see Fig. 2. For any given pulse
duration T, the field strength required to produce a 7 pulse
can be determined via gy=27/(Tw,;), and thus the spectral
full width at half maximum of the most detrimental |1) to |2)
resonance can be approximated by u,,&,. The |1) to |2) tran-
sition is detuned from the single laser frequency of the
pulse by an amount 2A. Therefore, when the spectral width
of the 7 pulse is comparable or larger than 2A, we would
expect the two-level approximation to fail and the quantum
gate fidelity to be much lower than 90%.

While the above expression for spectral width is the
continuous-wave laser field estimate, it does provide a rea-
sonable qualitative estimate of the pulsed laser field one. For
the laser and field parameters used to generate Fig. 2, the half
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width at half maximum of the |1) to |2) resonance is approxi-
mately 30 cm™!. For anharmonicities of this magnitude or
less, the effect of state |2) in the generalized three-level sys-
tem will begin to be significant and it is clear that the 7 pulse
predictions become quite poor in this regime.

Another important observation from Fig. 2 is that the
gate fidelity determined from the optimal control theory
shows a plateau for high anharmonicities. On the other hand,
the 7 pulse results increase slowly but definitely in the high-
anharmonicity regime. Therefore, the fidelity from the =
pulse prediction will eventually exceed that from the optimal
control field, see inset of Fig. 2. Figure 2 clearly shows that
the optimal control theory results are not the global maxi-
mum in the sense of the final yield (gate fidelity), and thus
the significance of the “accuracy” of quantum gates obtained
via the optimal control theory must be examined carefully.
For example, for the OH parameters, by decreasing the pen-
alty parameter ¢ from 1 to 0.5, we can obtain a gate fidelity
of 0.9986, which is considerably higher than that of the «
=1 result of 0.9947. The maximum field amplitude for the
ap=0.5 case increases by 2.3% compared with the ay=1
case, while the total pulse energy increases by only 4.8%.
This amount of energy increase should be readily achieved
experimentally, and thus higher fidelity can be achieved.

The reason for the increase in gate fidelity with the de-
crease in ¢, can be well understood using the pulse area
theorem analysis. For optimization using the objective func-
tion of Eq. (2), we assume that the optimized pulse has a
pulse area of A=m— 9, where ¢ is a small increment. Using
this pulse area, the maximum field strength is &,=2(7
—8)/(Tuy,). If 8is small, then this optimized pulse will gen-
erate a population transfer P that scales as P~ 1-(5/2)%
Since the time-dependent wave function satisfies the
Schrddinger equation, the last term in the objective function
of Eq. (2) will be identically zero. The sum of the first two
terms can then be determined using a small § approximation,
i.e., only the 8 and & terms are retained. After a relatively
straightforward derivation, the objective function K; (within
the RWA and for a small value of 6) is given by

7# 1 0
Kﬁz(Z— ag - @T— ay |8 = 2aymé ).
T/ pinTAL 2

(17)

The increment &, that maximizes the objective function
can be determined to be

2a0m
5max= 2 . . (18)
Mor T +2a

It is related to the transition moment between the qubit states
Mop» the target time T, and, most importantly, the (time-
independent) penalty function parameter «,. Within these ap-
proximations, the maximal gate fidelity that can be obtained
using the optimal control theory will be 1—(8,,,c/2)*. In the
high-anharmonicity regime of Fig. 2, where the two-level
model is most valid, i.e., A=50 cm™, Eq. (18) provides near
quantitative predictions for the gate fidelity. For example, for
the OH parameters where A=89.76 cm™!, Eq. (18) predicts a
gate fidelity of 0.9951 for ap=1 and 0.9987 for «;=0.5.
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These can be compared with the gate fidelities determined
numerically using the optimal control theory algorithm of
0.9947 and 0.9986, respectively. In fact, by decreasing «
further to 0.1, the gate fidelity can be determined to be higher
than 99.99% using the optimal control theory algorithm.
Clearly, using the objective function given by Eq. (2), one
must be careful in the choice of the penalty function param-
eter ), as it can critically affect the predicted gate fidelities.

Equation (18) also makes it clear that while the 7 pulse
captures most of the physics in the high-anharmonicity re-
gime, the optimized pulse will not be the 7 pulse unless
ay=0. Since the optimal control algorithm penalizes the
pulse energy, see the second term of Eq. (2), it would even-
tually deem an increase in pulse amplitude as unfavorable.
Thus, while the pulse determined via the optimal control
theory would approach the 7 pulse limit, it would never
reach this limit as the increase in pulse amplitude required
would not be numerically warranted due to the penalty func-
tion. Clearly, how close one comes to this limit is a function
of the choice of penalty parameter «; and any nonzero pen-
alty on the field, with fixed target time, will prevent the fi-
delity from reaching the “true” maximum. We expect the ¢
effect shown above from pulse area analysis to be general. In
Ref. 35, it is shown that the unrestricted optimal control will
always lead to perfect control or no control. It is also shown
that the maxima in the control plane that might be accessible
via the optimal control algorithm have “flat tops™ (see Fig. 1
of Ref. 35) in parameter spaces. This is similar to the flat
tops in Eq. (8) near A=m. So, in general, when the optimal
control algorithm explicitly penalizes the pulse energy, as in
Eq. (2), it would eventually deem an increase in pulse am-
plitude as unfavorable due to the decrease in the objective
function from the pulse energy term.

While the focus has been on the dependence of quantum
gate fidelity on the anharmonicity of the molecular system,
other effects such as the target time can be understood using
the pulse area analysis. For all the anharmonicities consid-
ered and for a target time of T=750 fs, we have wug,T
> 2a(ay=1); the transition dipole moment has a very small
dependence on the anharmonicity of the system. Therefore,
in Eq. (18), the a term in the denominator can be omitted
and it can be seen that increasing the target time 7 has the
same effect as decreasing «,. For example, using the OH
parameters and «y=1, Eq. (18) predicts that an increase in
the target time from 750 to 1000 fs will result in an increase
in gate fidelity from 0.9951 to 0.9972; the corresponding
numerical results determined using the optimal control
theory algorithm are 0.9947 and 0.9971, respectively.
Clearly, the simple pulse area analysis provides a physical
insight into the effects of the target time (pulse length) on the
gate fidelity. Physically, increasing the target time results in a
decrease in the maximum field strength, as discussed above.
Hence, the effective spectral bandwidth for the [1) to [|2)
transition is reduced relative to that for the shorter pulse, and
the molecular system can be better approximated as a two-
level system even for smaller anharmonicities.

The difference between Hadamard gate and NOT gate
can also be well explained from Eq. (18). The Hadamard
gate corresponds to the following operation
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1
HAD|0) — ,—5[|0>+ 1),
\‘!

(19)
HAD|1) — —}_[|0>— [1)].
V2

Within the pulse area theorem treatment of the problem, the
change from a NOT gate to a Hadamard gate corresponds to
a change in pulse area from  to 7/2. Therefore, the maxi-
mal gate fidelity that can be obtained using the optimal con-
trol theory will be 1—(8,,,,/2)%, where &,,, is given by Eq.
(18) with 7 replaced by /2. For the OH parameters, the
fidelity of the Hadamard gate’ (0.9988) can be accurately
reproduced using this approximation (0.9988).

The above discussions provide analytical explanations
for the results in the high-anharmonicity regime, A
=50 cm™! for T=750 fs. For the purposes of quantum logic
gate operations, where extremely high gate fidelities are re-
quired, this is the only regime of interest. However, for the
low-anharmonicity regime, the improvement of the optimal
control result over the simple 7 pulse prediction is quite
significant. For very harmonic systems, i.e., low anharmo-
nicities, transitions to states outside the two-level system can
be significant. In order to compensate for these detrimental
transitions, the optimized pulse must have more than a single
(time-independent) frequency component, i.e., it cannot be
the single frequency  pulse. Interference between different
transitions can be utilized to maximize the final yield of a
desired transition. The understanding of these interferences
in the low-anharmonicity regime is outside the scope of this
paper, but here we demonstrate that an analytical investiga-
tion of these mechanisms is possible.

The Fourier analysis of the optimized pulse for OH, see
Fig. 1, shows that the spectrum contains a series of fre-
quency components located near the one-photon and over-
tone frequencies. The magnitudes of the peaks decrease
quickly (note the logarithmic scale) and thus only the one-
photon peak is significant. A Fourier analysis of the opti-
mized pulse for the lowest anharmonicity considered in this
paper, A=10 cm™', shows a spectrum (not shown here) that
is similar to that presented in Fig. 1, but the overtone transi-
tions have increased in magnitude and become numerically
significant. In order to investigate the role of the overtone
transitions in the control process, a new pulse is constructed
numerically using only the frequency components around the
first peak (in the range of [0.8w, 1.1w]). We find that by only
using these frequency components, good agreement with the
complete optimal control field is obtained, see Fig. 3, even
for the most harmonic case. Therefore, most of the control
can be obtained by using a pulse with frequencies around the
one-photon frequency, rather than one with many high-
frequency components. This fact enables the utilization of
the RWA when examining optimal control and the use of
these simplified pulses for optimal control problems is the
subject of on-going investigations.
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FIG. 3. Fidelities of the NOT gate as a function of the anharmonicty pa-
rameter of the model system. Results are illustrated for the reconstructed
pulse (circles) and for the laser pulse with the full spectrum taken into
account (squares). See text for more details.

IV. CONCLUSION AND DISCUSSION

The effects of different laser and molecular parameters
on the implementation of qubit gate operations based on mo-
lecular vibrational states have been investigated. By con-
structing the analytically optimized pulse based on the pulse
area theorem, we have demonstrated that the simple 7 pulse
captures the physics of single-qubit gate operations for large
anharmonicities, A =50 cm™! for a target time of 750 fs. A
simple analytical expression, Eq. (18), has been derived that
allows the dependence of the gate fidelity on the target time
and penalty function parameter «, to be determined. It has
been shown that «;, which can be chosen arbitrarily, plays a
critical role in the determination of the final gate fidelity.
Although the importance of the penalty parameter «, on the
optimal control theory results has been qualitatively dis-
cussed before” based on numerical investigations, to the
best of our knowledge, Eqs. (17) and (18) represent the first
analytical expressions derived to show this importance.

The discussion in this paper shows that one is generally
prevented from attaining 100% gate fidelity using an objec-
tive function of the form given by Eq. (2) due to the penalty
on the total pulse energy. Theoretically, this difficulty can be
overcome by introducing the field in the previous iteration as
a reference field'” and then penalizing the difference between
the new field and the reference field in the objective function.
However, this choice of reference field may be problematic
as the field strength is not restricted. More elaborate choices
of the reference field are being developed to address the
problem of incorporating various constraints on the opti-
mized field in a uniform way, and it will be discussed
separately.3 6

Overall, the utility of simple analytical expressions for
interpreting the roles each of the laser and molecular param-
eters plays in the use of vibrational eigenstates for molecular
quantum computing has been emphasized. These analytical
expressions complement the numerical calculations based on
quantum optimal control algorithms and are very useful for
predicting and explaining quantum gate operation in this
one-dimensional diatomic model. We expect that the use of
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sophisticated quantum optimal control algorithms will be
crucial for obtaining optimized fields to control dynamics in
polyatomic molecules and/or to implement more complex
quantum computing algorithms. For example, the tailored
pulses may have to account for decoherence effects.'” Deco-
herence has been neglected in the present one-dimensional
model, since the pulse duration for the gate operations is
much shorter than the lifetimes of the vibrational states de-
fining the qubit. If the model considered in the present work
was chosen to represent a single vibrational mode in a poly-
atomic molecule, decoherence effects could be introduced
with a phenomenological state lifetime. One could utilize a
more sophisticated density-matrix approach, as considered
by Ohtsuki,'® but the addition of a phenomenological life-
time into the current analytical model would provide a quali-
tative understanding of the underlying physics including de-
coherence. While the model presented is basic, analogous
ideas, e.g., two two-level systems with interactions between
them, should help in the understanding of the implementa-
tion of multiqubit operations, e.g., the CNOT gate, in poly-
atomic molecules. Work in this area is in progress.

ACKNOWLEDGMENTS

The authors thank the Natural Sciences and Engineering
Research Council of Canada and the University of Alberta
for financial support.

"M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information (Cambridge University Press, New York, 2000).
2G. Benenti, G. Casati, and G. Strini, Basic Concepts, Principles of Quan-
tum Computation and Information Vol. I (World Scientific, Singapore,
2004).
3R. Feynman, Int. J. Theor. Phys. 21, 467 (1982).
4J. A. Jones and M. Mosca, J. Chem. Phys. 109, 1648 (1998).
’D. G. Cory, A. FE. Fahmy, and T. F. Havel, Proc. Natl. Acad. Sci. U.S.A.
94, 1634 (1997).
®N. A. Gershenfeld, Science 275, 350 (1997).
"D. Babikov, J. Chem. Phys. 121, 7577 (2004).
8C. Tesch and R. de Vivie-Riedle, Phys. Rev. Lett. 89, 157901 (2002).
°’c. Tesch, L. Kurtz, and R. de Vivie-Riedle, Chem. Phys. Lett. 343, 633
(2001).
U. Troppmann, C. Tesch, and R. de Vivie-Riedle, Chem. Phys. Lett. 378,
273 (2003).
"U. Troppmann and R. de Vivie-Riedle, J. Chem. Phys. 122, 154105
(2005).
'2S. Suzuki, K. Mishima, and K. Yamashita, Chem. Phys. Lett. 410, 358
(2005).
BR. Zadoyan, D. Kohen, D. A. Lidar, and V. A. Apkarian, Chem. Phys.
266, 323 (2001).
VA Bihary, D. R. Glenn, D. A. Lidar, and V. A. Apkarian, Chem. Phys.
Lett. 360, 459 (2002).
157, Vala, Z. Amitay, B. Zhang, S. R. Leone, and R. Kosloff, Phys. Rev. A
66, 062316 (2002).
'6]. P. Palao and R. Kosloff, Phys. Rev. Lett. 89, 188301 (2002).
'7J. P. Palao and R. Kosloff, Phys. Rev. A 68, 062308 (2003).
'8Y. Ohtsuki, Chem. Phys. Lett. 404, 126 (2005).
W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998).
2p, Tannor, V. Kazakov, and V. Orlov, in Time Dependent Quantum Mo-
lecular Dynamics, edited by J. Broeckhove and L. Lathouwers (Plenum,
New York, 1992), p. 403.
K. Sundermann, M. Motzkus, and R. de Vivie-Riedle, J. Chem. Phys.
110, 1896 (1999).
2T, Hornung, M. Motzkus, and R. de Vivie-Riedle, J. Chem. Phys. 115,
3105 (2001).
Y. Ohtsuki, G. Turnici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004).
*D. Deutsch and R. Jozsa, Proc. R. Soc. London, Ser. A 439, 553 (1992).

10

Downloaded 19 Jan 2006 to 129.128.168.123. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



034111-8 T. Cheng and A. Brown

»J. M. Geremia, W. Zhu, and H. Rabitz, J. Chem. Phys. 113, 10841
(2000).

*G. G. Balint-Kurti, F. R. Manby, Q. Ren, M. Artamonov, T.-S. Ho, and
H. Rabitz, J. Chem. Phys. 122, 084110 (2005).

7T, Hornung, M. Motzkus, and R. de Vivie-Riedle, Phys. Rev. A 65,
021403 (2002).

%N. Rosen and C. Zener, Phys. Rev. 40, 502 (1932).

#G. F. Thomas, Phys. Rev. A 27, 2744 (1983).

J. Chem. Phys. 124, 034111 (2006)

3OM. Holthaus and B. Just, Phys. Rev. A 49, 1950 (1994).

3. Cao, C. J. Bardeen, and K. R. Wilson, Phys. Rev. Lett. 80, 1406
(1998).

*2M. Garcia and I. Grigorenko, J. Phys. B 37, 2569 (2004).

3K. J. Schafer and K. C. Kulander, Phys. Rev. A 42, 5794 (1990).

**H. Kobeissi, J. Comput. Phys. 61, 351 (1985).

35H. Rabitz, M. Hsich, and C. Rosenthal, Science 303, 1998 (2004).

3T. Cheng and A. Brown (unpublished).

Downloaded 19 Jan 2006 to 129.128.168.123. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



