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The driven molecular-dynamics~DMD! method, recently proposed by Bowman, Zhang, and Brown
@J. Chem. Phys.119, 646 ~2003!#, has been implemented into theTINKER molecular modeling
program package. The DMD method yields frequencies and normal modes without evaluation of the
Hessian matrix. It employs an external harmonic driving term that can be used to scan the spectrum
and determine resonant absorptions. The molecular motions, induced by driving at resonant
frequencies, correspond to the normal-mode vibrations. In the current work we apply the method to
a 20-residue protein, Trp-cage, that has been reported by Neidigh, Fesinmeyer, and Andersen
@Nature Struct. Biol.9, 425~2002!#. The structural and dynamical properties of this molecule, such
asB-factors, root-mean square fluctuations, anisotropies, vibrational entropy, and cross-correlations
coefficients, are calculated using the DMD method. The results are in very good agreement with
ones calculated using standard normal-mode analysis method. Thus, the DMD method provides a
viable alternative to the standard Hessian-based method and has considerable potential for the study
of large systems, where the Hessian-based method is not feasible. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1777573#

I. INTRODUCTION

Important progress in developing new scientific methods
and technologies that integrate physical, chemical, and bio-
logical approaches with information science, mathematics,
and computational science has been made. In chemistry,
computational simulations are a frequent companion to ex-
perimental results. Whether used for predicting the structure
or the properties of molecular systems, calculations are in-
dispensable for verifying experiments and generating unex-
pected insight. Nowadays highly sophisticated and accurate
computational methods are commonly used to study the
structure and reactions of small molecules. The application
of these methods to investigate biological macromolecules
~e.g., proteins and nucleic acids! faces enormous challenges
due to the huge computational demands. Knowledge of the
atomic motions and their collective or correlated character in
proteins plays an important role in understanding of their
biological functions,1 and thus approximate computational
methods are used to simulate the protein dynamics.

One of the principal tools in the theoretical study of
biological molecules is the method of molecular dynamics
~MD! simulations. This computational method predicts the
time dependent behavior of a molecular system. MD simu-
lations have provided detailed information on the fluctua-
tions and conformational changes of proteins and nucleic
acids. These methods are now routinely used to investigate
the structure, dynamics, and thermodynamics of biological

molecules and their complexes. Limitations of these methods
are imposed by the approximate nature of the force fields, the
absence of quantum effects, and the limited time scale~order
of nanoseconds!.1

The other major approximate technique is normal-mode
analysis~NMA !. This method has long been used as a tool
for interpreting vibrational spectra of small molecules.2,3 The
frequencies obtained from NMA can be directly related to
experimental infrared and/or Raman measurements, and the
derived normal modes can be used in characterizing the dy-
namic behavior of molecules. Advances in computational
technology over the last few decades have made normal-
mode analysis of proteins and other large molecules
practical.4,5 Although NMA is a quantum method, it is ap-
proximate, because only the harmonic motion of the system
around a single potential minimum is taken into account.
Qualitative and semiquantitative estimates can be made for
many properties6 of macromolecules such as the magnitude
of atomic fluctuations, displacement covariance matrix, vi-
brational entropy, etc.7

The standard normal-mode analysis requires the calcula-
tion of a mass-weighted second derivative matrix~Hessian!
followed by the diagonalization of that matrix. The order of
the Hessian matrix is 3N, whereN is the number of atoms in
the molecular system. There are a number of bottlenecks
associated with its application to large systems, containing
thousands of atoms. In particular, the calculation and storage
of the Hessian scale quadratically with the size of the system.
The diagonalization scales as the cube of the dimension of
the Hessian. Thus, for large molecules the storage and diago-
nalization of the Hessian can quickly exceed the memory of
a typical workstation.
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Awareness of the limitations of the Hessian-based
normal-mode analysis for large molecular systems resulted
in the development of several approaches designed to over-
come the difficulties with the storage and diagonalization of
the Hessian matrix. In proteins, the low-frequency normal
modes that correspond to the large-scale conformational
change are often of central interest. Previous studies reveal
the success of approximate coarse-grained protein models8,9

that are useful in characterizing large-scale cooperative mo-
tions in systems composed of more than several thousand
residues. This approach is based on a block normal-mode
algorithm that projects the Hessian matrix into local
translation/rotation basis vectors and, therefore, reduces the
size of the matrix involved in diagonalization.

In our previous paper,10 we proposed a driven molecular
dynamics~DMD! approach that can be used to obtain normal
modes without evaluation of the Hessian matrix. We verified
the method on HOD and H5O2

1 , and discussed its computa-
tional aspects and its potential application for large molecu-
lar systems.10 In this work, we apply and test the DMD
method to a small protein Trp-cage.11 We calculated the
structural and dynamical properties of this molecule, such as
B-factors, root-mean square fluctuations, vibrational entropy,
anisotropies, and cross-correlation coefficients using the nor-
mal modes and frequencies obtained from the DMD simula-
tion. The results are compared to those calculated using stan-
dard normal-mode analysis method.

In the following sections, we briefly review the algo-
rithm of the DMD approach and describe our implementa-
tion in the TINKER program.12 Then we discuss the param-
eters used for the DMD simulations, their meaning, and
impact on protein properties, as well as performance and
accuracy of the DMD method.

II. METHOD

As described in a previous work,10 the principle of the
DMD method is to employ an external harmonic driving
term to scan the frequency spectrum and determine resonant
absorptions, which under mild driving equal to the normal-
mode frequencies. The molecular motions, induced by driv-
ing at resonant frequencies, correspond to the normal-mode
vibrations. The Hamiltonian of a molecular system consist-
ing of N atoms used in DMD simulation is given by

H~p,q,t !5H0~p,q!1U~ t !, ~1!

whereq andp represent the 3N atomic Cartesian coordinates
and momenta, respectively. The molecular HamiltonianH0

in this equation is given by

H0~p,q!5(
i
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2

2mi
1V~q!. ~2!

The driving termU(t) depends only on internuclear dis-
tancesr i j and is given by
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wherel i j are the coupling constants. Hamilton’s equations
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The absorption measure that we adopt is the average
total internal energy of the molecule after a finite time of
driving, i.e.,

^E&5
1

t E0

t

H0~t!dt. ~5!

At nonresonant frequencies, the absorbed energy is small and
oscillatory with time, while on resonance it increases rapidly
with time. The absorption energy is also a good measure to
estimate the stability of the calculation with respect to the
driving strength. This issue will be discussed in further detail
in the following section.

The computational implementation of this method is
straightforward. The driving term and its derivative, which
are easy to evaluate, can be readily incorporated into any
molecular dynamics simulation program. We have done this
with the programTINKER.12 This program provides an excel-
lent basis for molecular mechanics and dynamics with some
special features to simulate biopolymers. It has the ability to
use several common force field parameter sets and it includes
a variety of novel algorithms for geometry optimization, po-
tential surface scanning, normal-mode analysis, solvation ef-
fects, etc. For simulation involving biopolymers, such as pro-
teins and nucleic acids, the initial positions for the atoms of
the biopolymer are usually obtained from a known x-ray
structure or NMR spectrum. If the molecular structure is ob-
tained, for example, in the PDB format~Protein Data
Bank!,13 this can be easily transformed into the Cartesian
coordinates using the pdbxyz program ofTINKER. Then the
structure is usually refined using an energy minimization al-
gorithm with the particular potential function~force field!
that is employed.

We implemented the driving term into the velocity Verlet
integration program ofTINKER. The scanning procedure to
obtain the normal-mode frequencies and corresponding
normal-mode vibrations we adopted is straightforward. The
system is initially at rest at a stationary point, and the driving
force at frequencyvn is weak enough to be harmonic. Dur-
ing the simulation the absorption energy@Eq. ~5!# is moni-
tored to identify a resonant frequency. For each frequency a
single trajectory is propagated for picoseconds. To date, the
available simulations of proteins and nucleic acid systems
range in length from picoseconds to nanoseconds.1 If the
frequencies alone are known, e.g., from a spectral analysis of
the velocity autocorrelation function, these can be used di-
rectly with DMD to obtain the normal modes by driving
exactly at the known frequencies. Otherwise, the DMD nor-
mal modes for the resonant frequencies are calculated from
the mass-weighted coordinates obtained any time in the tra-
jectory, after significant absorption of energy has occurred.
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III. RESULTS

To test the efficiency and accuracy of the DMD ap-
proach, we performed calculations of structural and dynami-
cal properties for a 20-residue protein~304 atoms!
Trp-cage11 ~PDB code: 1L2Y!, depicted in Fig. 1. The DMD
results are compared to those obtained from the standard
NMA. All calculations presented in this work were carried
out in vacuo. In both NMA and DMD simulations, the Trp-
cage protein was described with the AMBER force fieldf f 98
for nucleic acids.14 The structure was first energy minimized
by quasi-Newton nonlinear optimization15 until the rms gra-
dient was less than 1026 kcal/~mole Å).

We examine properties calculated from frequencies and
normal modes for the two methods, such as root-mean
square atomic fluctuations, temperature-dependentB-factors,
the vibrational entropy, anisotropies, and cross-correlation
coefficients. In most of the DMD calculations presented here,
the Trp-cage frequency spectrum is scanned with a frequency
step size equal to 1 cm21;16 each trajectory is propagated up
to 5 ps with 10 000 integration steps, unless stated otherwise.
The initial velocities of the molecular system are set to zero.

A. The driving parameter l

First we discuss the issue of the driving strength. For
simplicity, the driving parameter@l parameter in Eq.~3!#
was chosen to be the same for all bonds. The driving applied
to all bonds ensures that all normal modes will be excited.
Note that the choice of equal driving parameters is not nec-
essary and was made for convenience. For example, if a
molecule has symmetry~which is not the case for a protein!,
normal-mode frequencies can be driven separately with driv-
ing parameter matrix that transforms according to the appro-
priate irreducible representation of a point group.10 It should

FIG. 1. Trp-cage protein~PDB entry 1L2Y!. In the structure the backbone
trace is shown as a tube.

FIG. 2. Average absorption energy as a function of frequency calculated for
various driving parametersl in cm21 Å21 units.

FIG. 3. Typical energy profiles for nonabsorbing low frequency mode
v533.5 cm21, moderately absorbing frequencyv535.0 cm21, and strongly
absorbing frequencyv536.5 cm21.

FIG. 4. Distributions of frequencies calculated by standard NMA~Hessian!,
MD simulations with and without the driving terms~DMD and MD, respec-
tively!.
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be noted, however, the modes are not driven ‘‘equally’’ for
given driving time, i.e. some modes absorb more energy than
others. The driving parameter has to be selected carefully,
because it determines the amplitudes of the atomic motion.
In the case of a resonant frequency, as the trajectory propa-
gates, the molecule continues to absorb energy, and molecu-
lar motions can exceed the small amplitude, harmonic limit.
Driving beyond this limit is another feature of the DMD
method, since it offers the study of coupled anharmonic mo-
tion, with, however, the attendant complications of possibly
‘‘chaotic motion.’’ However, the focus of the present study is
to compare the DMD results to those obtained from the
NMA, so it is desirable to keep molecular vibration in the
small amplitude region. This was done by stopping the driv-
ing when the absorbed energy is roughly 10% of the har-
monic frequency, except for the lowest frequency modes,
where the cutoff is 20 or 30%. This threshold is also a useful
one for automated application of the method.

Certainly, the longer the propagation time is, the smaller
the driving parameters should be to keep the atomic motions
within the harmonic limit. We tested several driving param-
eters by analyzing the average absorption energy as a func-
tion of frequency as shown in Fig. 2. We gradually decreased
the driving parameter until the shape of the function did not
change. This convergence test is important to identify spuri-
ous absorption peaks at very low frequencies. Finally we
chose the driving parameterl50.04 cm21 Å21 for the
present calculations of properties of proteins derived from
the normal modes and frequencies.

Typical energy profiles for the nonabsorbing, moderately
absorbing, and resonant frequencies are shown in Fig. 3. The

average absorption energy@Eq. ~5!# is small and oscillatory
for nonabsorbing frequencies, while it rises rapidly at reso-
nant frequencies.

B. Spectrum

The ‘‘absorption’’ spectrum, i.e., the energy absorbed
from DMD calculations, along with the power spectrum ob-
tained by the Fourier transform of the velocity autocorrela-
tion function generated by a standard MD simulation, also
for 5 ps, and the results from the standard NMA are shown in
Fig. 4. Unlike the discrete frequencies in the normal-mode
analysis, the frequency distributions in the MD and DMD
simulations are quasicontinuous. In order to better compare
the discrete NM spectrum with the MD and DMD distribu-
tions, the NM distribution has been represented as a sum of
Gaussians with a resolution corresponding to the Fourier
transform limit of a 5 ps trajectory. These three spectra are
not strictly equivalent; however, they should agree in the
positions of the peaks, and on the scale of resolution of this
figure, there is good agreement. All spectra have been nor-
malized so that the largest peak value is equal to 1.

C. Atomic fluctuations

The DMD normal modes for the resonant frequencies
are calculated from the Cartesian coordinates obtained any
time in the trajectory, after significant absorption of energy
has occurred. Next we consider several properties computed
from the normal modes or the frequencies. One physical
quantity of particular interest is the thermal variance in the
position of atoms at equilibrium,̂(Dxj )

2&, ^(Dyi)
2& and

^(Dzi)
2&. For each variance the widely used classical expres-

sion for the atomic fluctuation of atomi is, e.g., for̂ (Dxi)
2&,

^~Dxi !
2&5

kBT

mi
(
j 51

3N26 ui j
2

v j
2

, ~6!

wherev j is the frequency of modej and ui j is the corre-
sponding projection of normal modej on the Cartesian coor-
dinates of atomi. Since the present implementation of DMD
method does not resolve exact NM frequencies but resonant
frequencies extracted from the uniform scan of the spectrum,
the sum in the Eq.~6! can be formally replaced by an
integral:

TABLE I. Statistics on the threshold to select absorbing frequencies.

Threshold Nm/Nf
a DRMSb S~300 K!b

5.031024 0.64 164% 132%
2.531024 1.09 126% 111%
1.031024 1.93 26% 22%
7.531025 2.09 210% 25%
5.031025 2.23 213% 27%

aNm is the number of absorbing frequencies in the molecule andNf is the
number of normal mode frequencies in molecule.

bThe difference between the DMD and Hessian root-mean square fluctua-
tions and entropies.

TABLE II. Root-mean square fluctuations@^Dr i
2&#1/2 in Å.

Method

DMD Hessian

Meana Minimum Maximum Meana Minimum Maximum

All atoms 0.48~0.19! 0.21 1.47 0.51~0.21! 0.24 1.59
Backbone 0.36~0.11! 0.21 0.61 0.36~0.10! 0.24 0.58
Side chains 0.51~0.21! 0.23 1.47 0.55~0.23! 0.28 1.59
N 0.40 ~0.14! 0.21 1.20 0.42~0.15! 0.25 1.34
C 0.44~0.10! 0.21 1.10 0.44~0.10! 0.24 1.22
O 0.45~0.09! 0.29 0.75 0.49~0.12! 0.29 0.89
H 0.53 ~0.15! 0.23 1.47 0.58~0.16! 0.30 1.59
Ca 0.37 ~0.11! 0.21 0.61 0.37~0.11! 0.26 0.58

aThe numbers are averages over all Trp-cage atoms for a particular class. Numbers in parentheses are standard
deviations.
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^~Dxi !
2&5

kBT

mi

E
0

vmax 1

v2
W~v!@ui~v!#2dv

E
0

vmaxW~v!

Nf
dv

, ~7!

whereW(v) is a weighting function~see below!, the integral
in the denominator of Eq.~7! is a normalization factor, and
Nf equals the number of normal modes (3N26 for N at-
oms!. For the purpose of evaluation of the integrals the fol-
lowing simple discretization procedure is used. The weight
factorsW(v) are 0 for nonabsorbing frequencies and 1 for
absorbing ones, and in the present casevmax54000 cm21.

At nonresonant frequencies the absorbed energy of the
molecule is small and oscillatory with time. In our calcula-
tions, the oscillatory limit was about 1024 ~of a normalized
integrated spectrum!, and all driving frequencies exceeding
this threshold value are considered as absorbing frequencies.
With this condition Eq.~7! becomes

^~Dxi !
2&5

Nf

Nm

kBT

mi
(
j 51

Nm ui j
2

v j
2

, ~8!

whereNm is the number of absorbing frequencies. We tested
the DMD results with respect to the threshold value and
found stable and accurate results relative to the exact ones
provided the threshold is low enough so thatNm is twice
larger thanNf ~see Table I!. With this inequality very few
true normal modes are missed in the above equation. There
will be approximate copies of normal modes appearing in the
sum; however, the normalization in this sum approximately
~and evidently accurately! accounts for this.

Statistics on properties related to atomic fluctuations of
Trp-cage protein are collected in Table II and compared to
the exact Hessian-based results. For most properties the error
is roughly 10% or less.~If exact normal-mode frequencies
are used, the agreement of the DMD and Hessian results is
nearly perfect; the error is 2%.! The root-mean square fluc-
tuations averaged over all protein heavy atoms~C,N,O! are

in the ranges an 0.36–0.58 Å; backbone atoms tend to have
smaller fluctuations, and side chain atoms tend to have larger
fluctuations. There is an increase in the magnitude of the
fluctuations as one goes from the center of the protein out
toward the terminal groups.

D. Anisotropy of motion

In the particular case of isotropic motion the fluctuations
in all directions are equal and given by

^~Dxi !
2&5^~Dyi !

2&5^~Dzi !
2&5

^~Dr i !
2&

3
~9!

for each residue~atom! i. The deviation of ^(Dxi)
2&,

^(Dyi)
2&, ^(Dzi)

2& from the isotropic valuê(Dr i)
2&/3 pro-

vides a measure of the anisotropy of fluctuations. The quality
of the DMD results is verified against the exact Hessian-
based calculations shown in Fig. 5. The largest differences
between the DMD and Hessian calculations are for the atoms
executing the largest fluctuations, e.g., atoms in the terminal
amino-acid groups and hydrogen atoms.

E. B factors

The atomic fluctuations are related to temperature-
dependent crystallographic factors~B-factors! according to
the well-known expression

Bi58p2 ^~Dr i !
2&

3
. ~10!

Figure 6 shows theB-factors atT5300 K for all atoms of the
Trp-cage protein calculated from the Hessian normal modes
@Eq. ~6!# and the DMD normal modes@Eq. ~8!#. The agree-
ment between the standard Hessian and DMD simulations is
very good, lending support to the use of DMD method for
further investigation of protein dynamics.

F. Entropy

Dynamical techniques are useful for understanding the
internal motions of complex systems as well as for evaluat-

FIG. 5. Anisotropy of fluctuations in Å2 of each atom measured by the
deviation of~a! ^(Dxi)

2&, ~b! ^(Dyi)
2&, and~c! ^(Dzi)

2& from the isotropic
value ^(Dr i)

2&/3 calculated by the DMD and standard NMA~Hessian!.
FIG. 6. A comparison ofB-factors calculated by NMA~Hessian! and low
resolution DMD simulation atT5300 K.
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ing thermodynamic properties. As far as proteins are con-
cerned, the computational estimate of entropy is of basic
interest in protein folding and ligand binding. In this work,
we test the calculation of the absolute entropy of Trp-cage

using the driven MD approach. The resonant frequencies ob-
tained from the same 1 cm21 scan procedure are used in the
standard expression for entropy,9 where again the sum is re-
placed by an integral,

Sv5

E
0

vmaxF \v

T~e\v/kBT21!
2kB ln~12e~2\v/kBT!!GW~v!dv

E
0

vmaxW~v!

Nf
dv

, ~11!

and then evaluated as described in Sec. III B. The absolute
values of entropy as a function of temperature are given in
Table III along with exact NMA results. As seen, the DMD
entropies are in very good agreement with the exact NMA
results.

G. Cross-correlation coefficients

Finally, we consider cross-correlation coefficients; these
are a general indication of the degree of the collective mo-
tion in protein. The cross-correlation coefficient between at-
oms i and j is defined as17

Ci j 5
^Dr iDr j&

~^Dr i
2&^Dr j

2&!1/2
. ~12!

These coefficients range from a value of21 ~completely
anticorrelated motions! to a value of11 ~completely corre-
lated motions!. They reflect correlation of displacements
along a straight line. In other words, two atoms moving ex-
actly in phase and with the same period, but along perpen-
dicular lines, will have a cross correlation of zero. Initially
the calculation was done using the 1 cm21 low resolution
DMD data set of frequencies and modes; however, the re-
sults were not in satisfactory agreement with an exact
normal-mode calculation. The reason for this is that cross-
correlation coefficients are sensitive to the orientation of
modes, and thus accuracy of these modes is essential. For
most proteins, accurate values of^(Dxi)

2& can be obtained
with as few as 30 lowest-frequency normal modes. Indeed, it
has been shown that low-frequency normal modes of pro-
teins, with frequencies under 30 cm21, are responsible for
most of their atomic displacements.18 In new DMD calcula-
tions we carried out the driving at exact Hessian normal-
mode frequencies up to 200 cm21. Using these, we calcu-

lated the cross correlations of the fluctuations of all backbone
Ca’s and did obtain accurate cross-correlation coefficients,
plotted in Fig. 7 next to the exact normal-mode results. Fig-
ure 7~c! is a result of the high resolution~40 ps simulation!
DMD scan performed up to 100 cm21 with 0.25 cm21 fre-
quency step.

H. Resolution

We expect that a large molecule, such as a protein, has
many regions of closely spaced frequencies. This presents a
challenge to the DMD approach to resolve closely spaced
frequencies. However, it is also important to determine how
accurately we need to resolve frequencies in order to deter-
mine properties of proteins accurately. The resolution power
of the DMD method is demonstrated in Fig. 8. We scanned
the spectrum in a small frequency range with a step of 0.25
cm21. Each trajectory was run for up to 40 ps with driving
parameterl50.0004 cm21 Å21 and as the trajectory was
propagated, we monitored the average absorption energy.
The resolving power of the DMD approach increases signifi-
cantly in going from 10 to 40 ps. After 30 ps the two peaks,
separated by about 2 cm21, are clearly resolved. The over-
laps of the corresponding DMD normal modes with the exact
NMA are 0.90 and 0.99, respectively. For regions of higher
density we need to propagate the trajectory longer and scan
with a very small frequency step. Note that for longer propa-
gation time smaller driving parameters should be used to
preserve small amplitude behavior, as was mentioned before.
Larger time propagation comes with increase in computa-
tional time, so it is important to determine whether typical
properties from a NMA can be accurately obtained with a
‘‘low resolution’’ scan of the frequencies. In this section we
have demonstrated that average molecular properties of pro-
teins, such as root-mean square fluctuations andB-factors,
can be obtained accurately even from a very low resolution
DMD calculation.

IV. SUMMARY AND CONCLUSIONS

The DMD method, applied in the simplest possible fash-
ion, i.e., by a uniform scan in frequencies, does provide an
accurate description of averaged quantities such average
atomic fluctuations and entropy for the Trp-cage protein, in
comparison to Hessian normal-mode results. For more de-

TABLE III. Trp-cage absolute entropies in kcal/mole K.

Temperature/K Hessian DMD

300 0.820 0.807
400 1.058 1.057
500 1.286 1.293

1000 2.159 2.154
1500 2.685 2.662
2000 3.030 2.997
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tailed properties such as cross-correlation coefficients, accu-
rate results require driving at exact normal-mode frequen-
cies. ~Of course all DMD calculations would benefit from
knowledge of the exact normal-mode frequencies.! Obvi-
ously, to obtain these frequencies in a straightforward scan
would be computationally very time consuming, but favor-
able for parallel computation. A variety of spectral deconvo-
lution methods could also be applied to the spectrum. An-
other approach is to use the velocity autocorrelation function
from a standard MD calculation but to apply new and prom-
ising signal processing methods to obtain accurate frequen-
cies. For example, the filter diagonalization technique devel-
oped by Neuhauser and co-workers19,20 and related but
newer techniques by Taylor and co-workers21,22 appear very
promising for this purpose.

Finally, it is important to note that normal-mode analysis
has well-known limitations, i.e., mode-coupling is ignored.
Thus, the approach cannot be applied to the exciting, new
field of two-dimensional infrared spectroscopy, which can

probe correlated, time-dependent motion of proteins and
peptides23–28 and which also probes modes throughout the
spectrum. The DMD method can be extended to this region;
however, since it is based on~classical! molecular dynamics,
it will have to be tested first against quantum calculations on
small benchmark systems.

In summary, the agreement of the properties calculated
using the DMD approach and the standard NMA is very
good. Thus, we conclude that the DMD method is a viable
alternative to the standard Hessian-based normal mode
analysis. Since the memory requirements of DMD are very
modest compared to the Hessian-based approach, we see no
obstacle to implementing it to a large bimolecule, where the
Hessian-based approach could not be applied~on a common
cluster of workstations!. We are planning such an implemen-
tation in the near future.
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