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Normal-mode analysis without the Hessian: A driven
molecular-dynamics approach
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We point out that normal modes and frequencies of molecules and molecular complexes can be
obtained directly from a harmonically driven molecular dynamics calculation. We illustrate this
approach for HOD and H5O2

1 and then discuss its potential advantages over the standard
Hessian-based approach for large molecules. ©2003 American Institute of Physics.
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Normal-mode analysis is a time-honored technique
chemistry1 to obtain vibrational frequencies and the corr
sponding motions of molecules, molecular complexes, ad
bates, etc., in the harmonic approximation. It is finding
newed use in the area of biomolecular simulations, wh
however, it can be very computationally demanding due
the large number of atoms.2 The standard normal-mod
analysis is based on a calculation and subsequent diag
ization of the mass-weighted force constant matrix, a
known as the Hessian. The normal-mode frequencies ar
rectly related to the eigenvalues and the normal modes to
eigenvectors of this matrix.

The order of the Hessian matrix is typically 3N, where
N is the number of atoms in the system of interest. T
computational procedure to obtain the eigenvalues
eigenvectors of the Hessian matrix is an O(N3) process, i.e.,
the computational effort scales likeN3. For small and
moderately-sized molecules,N is of the order of 100 or less
and the Hessian-based approach is easily carried out. H
ever, as recently stressed by Li and Cui,2 this approach be-
comes very difficult to implement for biomolecules whe
the number of atoms can approach and even exceed 10

A full normal-mode analysis, as described above, yie
both frequencies and normal modes. Another, quite differ
approach is based on the calculation of certain time corr
tion functions.3 This approach, however, only yields the fr
quencies and requires the Fourier transform of an approp
autocorrelation function, e.g., the velocity or dipole corre
tion function. The quantum version of the method,3 when
applied to vibrational motion, yields, in principle, the exa
excitation frequencies~in contrast to a normal-mode analy
sis, which is based on the harmonic approximation!. The
classical version of this theory is widely used in both isola
molecule and condensed matter applications;4–6 however,
most often not within the small amplitude, harmonic limit.
is well known that in this limit the method does yield th
correct normal-mode frequencies. To obtain sharp spec
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6460021-9606/2003/119(2)/646/5/$20.00

Downloaded 08 Aug 2003 to 129.128.203.199. Redistribution subject to 
n
-
r-
-
e,
o

al-
o
di-
he

e
d

w-

00.
s
nt
a-

te
-

t

d

al

features, a molecular dynamics calculation must be done
sufficiently long time to permit a well-resolved Fourier tran
formation of the time correlation function.4,5 In recent, very
promising work,7 ‘‘Filter Diagonalization’’ has been shown
to yield a sharper spectrum compared to a standard Fou
transform method.

An important limitation of current time-correlation
methods is the absence of information about the correspo
ing molecular motions, i.e., the normal modes, in the limit
small amplitude motion. In the context of condensed ma
calculations, this limitation motivated, in part, the develo
ment of ‘‘instantaneous normal-mode analysis.’’5,6 This ap-
proach requires the calculation and diagonalization of
Hessian~actually many such diagonalizations! and so is sub-
ject to the limitations of the Hessian-based method m
tioned above.

In this paper, we propose and demonstrate a metho
perform a full normal-mode analysis that does not requir
calculation of the Hessian. We show how normal modes
be obtained using a straightforward molecular dynam
~MD! approach. The method employs an external, harmo
driving term that can be used to scan the spectrum in a c
tinuous wave fashion to determine resonant absorptio
which for weak signals are the normal-mode frequenc
The molecular motions, induced by driving at resonant f
quencies, are~by definition! the normal modes. This ap
proach follows from a basic characteristic of normal mod
i.e., that a classical system executing small amplitude mo
about a minimum can be driven resonantly at the norm
mode frequency of the unperturbed system. It is also c
that the system will respond to a given resonant driving f
quency by executing the corresponding normal-mode vib
tion. To our knowledge, this approach has not been use
MD simulations to obtain normal modes.~We note that
harmonically-driven, MD calculations have been report
previously to simulate multiphoton absorption of light.8,9 In
these studies, a single bond was coupled classically to
external driving term with the object of creating a high
excited molecule. The external driving was not aimed at
© 2003 American Institute of Physics
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termining normal modes, nor was that possibility me
tioned.!

We give the details of one implementation of this a
proach and validate the method by applying it to two m
ecules. We note some advantages this method may have
the conventional Hessian-based approach for very large
tems and conclude with some comments about extension
anharmonic motion.

Let vn be a given normal-mode frequency, obtained
ther from a standard time-correlation calculation, or by
method we illustrate below. The suggestion is to perform
MD calculation, with the system initially at rest at a statio
ary point, with a weak, harmonic, driving force at the fr
quency vn . We investigated several forms for a drivin
force, including one that is linearly coupled to the Cartes
coordinates of each atom. This form does work, but it d
require additional constraints in order to avoid mixing tran
lational and rotational modes into the conventional norm
modes of vibration.10 Here we present results using a drivin
force that depends only on internuclear distances. This d
ing is obviously rotationally and translationally invarian
and thus the center of mass translation and overall rota
will not be excited by it.~Of course, other forms of the
driving that are translationally and rotationally invariant a
possible; however, we chose to use this particularly sim
form here.!

The Hamiltonian for driven molecular dynamics~DMD!
of a molecular system consisting ofN atoms is given by

H~p,q,t !5H0~p,q!1U~ t !, ~1!

whereq andp represent the 3N atomic Cartesian coordinate
and conjugate momenta, respectively. In this equation,
molecular Hamiltonian,H0 , is given by

H0~p,q!5(
i

pi
2

2mi
1V~q!, ~2a!

where V is the molecular potential, andU(t), the driving
term, is given by

U~ t !5(
i , j

l i j r i j sinvnt, ~2b!

wherer i j are internuclear distances, andl i j are the~small!
coupling constants. Hamilton’s equations of motion are

q̇a,i~ t !5
pa,i~ t !

mi
,

ṗa,i~ t !52
]H0

]qa,i
2(

i , j
l i j

]r i j

]a i
sinvnt

52
]V

]qa,i
2(

i , j
l i j

a i2a j

r i j
sinvnt;

i 51,...,N, a5x,y,z. ~3!

Thus, the only modification to standard MD codes is t
addition of the harmonic driving term, which, as seen,
quite simple to evaluate. More details about the coupl
constants are given below.
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If, as assumed,vn is a normal-mode frequency, then th
system should respond to the driving force by executing m
tion that is a normal mode, provided the driving is not t
hard, i.e., the motion remains in the small amplitude lim
This is easily achieved by choosing suitably small values
the coupling constants. In addition, it should be clear that
normal-mode frequency spectrum can also be determine
doing the analog of a continuous wave absorption exp
ment. That is, the driving frequency can be varied throug
frequency range and energy absorption should maximize
cally at the normal-mode frequencies. An examination of
molecular motion at a given ‘‘resonance’’ will provide th
corresponding normal mode. We now illustrate this appro
for HOD and the molecular complex H5O2

1 .
Consider HOD first. This triatomic represents this sim

plest nontrivial example of a molecule with normal mode
We chose to present results for HOD~instead of H2O) be-
cause of its low (Cs) symmetry, and thus there are no sym
metry conditions on the coupling matrixl i j . A realistic po-
tential was used,11 the equations of motion were integrate
using a standard integrator, and the coupling constantsl i j all
equal 0.0001 Hartree~22 cm21!. Note the choice of equa
coupling constants is not necessary and was made for
venience.

The absorption measure we adopt is the average t
internal energy of the molecule, which is given by

^E&5
1

T (
i

H0~ t i !, ~4!

whereT is the total driving time. The resulting spectrum fo
T equal to 20 000 atomic time units, which corresponds
1000 time integration steps, is shown in Fig. 1~a!. As seen,
there are three absorption peaks. The maxima of these p
are at frequencies that are in excellent agreement~less than 1
cm21 difference! with those from a Hessian-based, norma
mode analysis. It should be noted that these ‘‘absorptio
features are fairly broad and better resolution can be obta
using the more conventional correlation function metho
Also, note that the energy absorbed is of the order of
cm21, which indicates very mild driving.

The molecular motions corresponding to each reson
driving frequency are given in Figs. 1~b!–1~d!. As seen, the
lowest-frequency mode corresponds to a bend, followed
the local OD-stretch, and finally the local OH-stretch,
agreement with the normal modes from the conventio
analysis. Indeed, the normalized, mass-scaled Cartesian
placement vectors are in perfect agreement with the o
from the standard normal-mode analysis. We prefer to sh
the time dependence of the molecular modes because
clearly indicate that the system is monotonically absorb
energy with increasing time. Obviously, as the molecule c
tinues to absorb energy, deviations from small amplitude h
monic motion will occur and anharmonic motion will de
velop. Such motion would be expected to detune
resonant frequency from the harmonic one9 and could be
exploited to study anharmonic deviations from harmonic m
tion.

The second example is the complex H5O2
1 ~the proto-

nated water dimer!. This is an interesting and challengin
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 1. Absorption spectrum from driven molecular dynamics calculation for HOD~a!, and time dependence of the two bond stretches and the bond a
relative to the equilibrium values, measured in bohrs and radians, respectively, for the three normal modes with indicated frequencies~b!–~d!.
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system in several respects. First, there are a number of
frequency, torsion-type normal modes that require no ove
rotational mixing to describe properly.~This condition is met
by the form of the driving used.! Second, the system is quit
floppy, with two equivalent minima~of C2 symmetry! which
are separated by a second-order saddle point 97 cm21 above
the minima. The minima are for a slightly nonline
O–H1 – O configuration, and the saddle point is at a line
configuration. Thus, these stationary points are separ
from each other by a small variation in the O–H1 – O bend-
ing angle.

We did a standard, Hessian-based, normal-mode ana
at one minimum using the full-dimensional potential
Ojamäe et al.12 There are seven normal modes ofB symme-
try and eight ofA symmetry. These sets of modes can
driven separately with a coupling-matrix that transforms
cording to the appropriate irreducible representation of
C2 point group. The driving was done for 20 000 atomic tim
units with alll i j equal in magnitude to 0.000 01 Hartree b
with signs chosen to conform toB symmetry. The resulting
Downloaded 08 Aug 2003 to 129.128.203.199. Redistribution subject to 
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energy absorption spectrum for theB-modes is shown in
Fig. 2. As seen, there are seven peaks, and the correspon
frequencies agree very well with the normal-mode frequ
cies. Note, these driving conditions are much milder than
the HOD example. This was necessary owing to the v
shallow minima in this example, compared to HOD.

As an illustration of the normal modes obtained from t
DMD calculation, we show the lowest frequency~178
cm21!, counter-rotating torsional normal mode~which is ofA
symmetry! in Fig. 2.13 The mode obtained using the Hessi
approach is also shown, and, as seen, there is exce
agreement with the DMD mode. We note that this type
torsional mode is of interest in conformational studies
biomolecules,2 and we are gratified that DMD can yield
correct description of it.

These two examples clearly demonstrate that a norm
mode analysis can be done using DMD, without recourse
the Hessian. Thus, the method provides a viable alterna
to the standard Hessian-based method. In comparing
computational effort of the two methods, it must be stres
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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that because the two methods are quite different, they h
different computational demands. As already noted, the c
ventional Hessian-based analysis requires the calculatio
the 3N33N matrix ~of second derivatives of the potential
a stationary point!, followed by diagonalization to obtain ei
genvalues and eigenvectors. Thus, the effort to calculate
Hessian is O(N2), and the effort to obtain eigenvalues an
eigenvectors is O(N3). So clearly this is not favorable sca
ing for largeN.

The DMD approach requires O(N) gradients of the po-
tential per time step. A trajectory ofNsteps thus is O(N
3Nsteps), and to scanNscan frequencies is O(N3Nsteps

3Nscan). If the frequencies are already known, say from
time-correlation function calculation, then per frequency
effort to obtain the corresponding normal mode is just ON
3Nsteps). A typical value forNstepsis 1000, so the effort in a
DMD calculation does not become competitive with t
Hessian-based one untilN approaches 1000.~The number of
time steps must be at least enough for several cycles of
driving term. However, we have found that the integrati
time step can be larger for driving a low-frequency mo
compared to the time step to drive a high-frequency mod!

Thus, roughly stated, the two methods become com
rable for 1000 atoms if all normal-mode frequencies a
modes are calculated. However, if a much smaller numbe

FIG. 2. Absorption spectrum from driven molecular dynamics calculat
for modes of H5O2

1 of B-symmetry~upper plot! and comparison of norma
mode for the lowest frequency mode~A-symmetry! from conventional
analysis~left! and present driven calculations~right!.
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normal modes is of interest, then the DMD could be sign
cantly faster than the conventional approach. It should a
be noted that the memory requirement of DMD is much le
than the conventional approach forN greater than 1000. Fur
ther, it should be obvious that a DMD calculation for ma
frequencies is ‘‘embarrassingly’’ parallel.

Several issues clearly need further investigation for
plications to biomolecules. One is the choice of internal c
ordinates to drive. It seems intuitive that different choic
could result in more or less efficient driving of certa
modes. For example, if the interest is in low-frequency t
sional modes is it sufficient and perhaps even most effic
to drive nonbonded internuclear distances? Another issu
the ‘‘resolving power’’ of the method, i.e., the ability to dis
tinguish modes that are very close in frequency. In princi
driving can be done with arbitrary precision; however, it m
be necessary to drive for longer times to separate modes
nearly the same frequency. Driving for longer times must
done with care of course~i.e., by choosing smaller coupling
constants!, because as the energy absorbed increases so
the deviation from harmonic motion.

In a different context driving the system beyond the h
monic limit may be of great interest since this opens a w
dow on the study of coupled, anharmonic motion. To t
extent that classical dynamics accurately describes this
tion, it would be interesting to apply DMD to a system that
executing motion exceeding the harmonic limit. In the H5O2

1

example, we explored this in a preliminary way. We notic
that driving the twoB-normal modes of frequencies 553 an
580 cm21 with slightly larger values of the coupling con
stants led to sidebands in the absorption line shapes. Fu
investigation revealed that driving these two mod
‘‘pushes’’ the system in the direction of the second ord
saddle point. Indeed a normal-mode analysis at the sa
point reveals two imaginary modes with motions quite sim
lar to theseB-modes of the minima. Clearly this kind o
motion is well beyond the normal-mode picture and in fa
points to a breakdown of it. DMD does potentially offer
way to understand this motion as well driving it. This
clearly a topic for future investigations as are the poi
made in the preceding paragraph.

We thank the National Science Foundation~CHE-
0131482! for financial support and also the ONR through
DURIP grant ~N000140210629! for support of computa-
tional facilities.
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