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Introduction
Functional group replacement and pre-organization of

ligands in their bound conformation are two approaches 
for the rational design of high affinity carbohydrate 
inhibitors of protein-saccharide interactions. To date, 
neither has shown great promise. Here we attempt to 
combine both modification types to create high affinity 
oligosaccharides.

Recently, we showed that pre-organization of the 
Shigella flexneri variant Y trisaccharide antigen (α-L-
Rha-(1-3)-α-L-Rha-(1-3)-β-D-GlcNAc-OMe) to give the 
tethered trisaccharide 1 resulted in 1.9 kcal mol-1 higher 
binding energy with  monoclonal antibody (mAb) 
SYA/J6. However, the affinity gain was of enthalpic  
(1.5 kcal mol-1) rather than entropic origin.1 Other 
modifications to the central rhamnose ring (2´-deoxy-
and 2´-chloro-2´-deoxy) of the trisaccharide have 
produced inhibitors with high binding affinity.2,3,4

Here we combine molecular pre-organization of the 
native trisaccharide as exemplified by 1 with 2´-deoxy-
and 2´-chloro-2´-deoxy modifications to give ligands 2
and 3. Reference compounds 4 and 5 (non-tethered 
variants of 1) were synthesized to verify that the tether 
was uniquely responsible for the increased affinity of 1. 
Preliminary binding data are also reported.
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An efficient synthetic route to tethered cyclic
oligosaccharide inhibitors and acyclic reference 
compounds is described.

Initial ELISA data show that the free energy gains 
from paired modifications result in higher affinity ligands
but the free energy gains of single site variants are not 
additive. This suggests that the mode of binding for 
each ligand modified at single sites differs so that it is 
impossible to productively pair tethering and functional 
group replacement.

Scheme 2: Assembly of Tethered
Trisaccharide 2

Scheme 4: Assembly of Tethered 
Trisaccharides 4 and 5
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Scheme 1: Monosaccharide Donors
Rhamnosyl Donor:

L-Mannosyl Donor:
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