$P k$ _STARFISH: The Next Generation

Pavel I. Kitov, ${ }^{1}$ Joanna M. Sadowska, ${ }^{1}$ Paola Marcato, ${ }^{2}$ Glen D. Armstrong ${ }^{2}$ and David R. Bundle ${ }^{1}$ 1 Department of Chemistry and
2Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada

Background

Expression of Shiga like toxins (SLTs) by certain strains of Expression of Shiga like toxins (SLTs) by certain strains of
pathogenic bacteria, i.e. E. coli 0157, is the major virulence
factor, responsibie for the onset of diarrheal diseases, and in factor, responsible for the onset of diarrheal diseases, and in some cases this leads to serious clinical complications such as Hemolytic Uremic Syndrome (HUS). Inhibition of binding of the
pentameric B subunit of SLT to its natural receptor Gb3 also called CD77, is envisioned as a means to alleviate or prevent the severe toxic effects and should offer a valuable therapy for this
life-threatening disease. Small oligosaccharides such as the Pk trisaccharide of Gb3 have
intrinsically low affinity for SLT binding sites. Multivalent ligands
often show enhanced activity that results both from an increased often show enhanced activity that results both from an increased
number of specific and non-specific interactions as well as from number of specific and non-specificic interactions as well as from
cross-linking of the receptor. These favourable factors are opposed by a generally unfavorable entropy of binding and merely increasing the number of ligands does not increase
activity. As more ligands are added to a multimeric inhibitor entropy losses and steric inaccessibility lead to increasingly smaller contributions to the activity of such inhibitors. Our design
of a new class of structuraly defined of a new class of structurally defined, receptor-tailored
multivalent inhibitors, STARFISH, presents us with the uniqu opportunity to explore the molecular basis of multivalent
interactions in order to design tighter inhibitors.

Inhibitor design

We used the structural information ${ }^{1}$ of the Shiga like toxin Type 1 We used the structural information of the Shiga like toxin Type
(SLT-1) binding to the Pk trisaccharide epitope to design and then synthesize Pk-STARFISH, the first soluble and potent inhibitor of the toxin. 2 NMR, crystallographic data and comparison
of data from site-directed mutants provides strong evidence that of data from sitit-directed mutants provides strong evidence tha
binding site 2 of SLT-1 is the most avid one followed by site binding site 2 of SLT- is the most avid one followed by site
(c.a. 10% of site 2 activity) and the much less significant site 3 . Although the original design had the objective of placing the two
trisaccharides at the end of each arm of STARFISH in the two trisaccharides at the end of each arm of STARFISH in the two
different binding sites 1 and 2 , the actual mode of binding proved different binding sites 1 and 2 , the actual mode of binding proved
to be more uniform. As shown on Fig. 1 the decavalent Pk_STARFISH complexes with the 10 copies of binding site 2 on two toxin molecules and creates a 2:1 toxin:ligand complex. Thus, only 10 out of 30 putative Pk binding sites on the protein surface
are engaged in binding and the rest are hindered due to the are engaged in binding, and the rest are hindered due to the
sandwich or face-to-face arrangement. Although showing sub-nanomolar activity in solid-phase assays, Pk-STARFISH sub-nanomolar acivity
exhibited SL-1 vero cell toxicity at only micro-molar
contion concentrations. To enhance the specific binding of STARFISH to
SLT we decided to utilize the subsidiary, less avid site 1. This SLT we decided to utilize the subsidiary, less avid site 1 . This
iteration of the inhibitor design is based on the crystal structure o 4he complex between SLT-1B ans decavalent STARFISH (Fig
th). Additional Pk trisaccharide dimers were introduced to each 1). Additional Pk trisaccharide dimers were introduced to each
arm of the STARFISH molecule that would allow the multivalen arm of the STARFISH molecule that would allow the
ligand to complex with the unoccupied binding site 1 .

Figure 1. Crystal structure of 2:1 SLT-1/STARFISH adduct.

Synthesis
Synthesis of the key trisaccharide 6 will be described elsewhere. The poly-amino derivative 4 was obtained starting from a known penta-amine 3. Conventional peptide chemistry was utilized to grow spacers of appropriate length, which are terminated by a tetra-amino dendrimer made from 1,3-diamino-2-hydroxy-propane. The resulting construct was coupled with activated Pk-trisaccharide derivative 6 to give after deprotection the target 20 -mer STARFISH 1. Decameric STARFISH 2 , which is a version of the original Pk-STARFISH, was obtained in an analogous fashion.

Biological Evaluation

Compounds 1 and 2 were evaluated in solid phase ELISA and vero toxicity assay as previously described ${ }^{2}$ (Fig. 2). For SLT- 1 the new PK-STARFISH 1 inhibits the toxin at nano-molar concentrations.信 This suggests the possess the

Crystallographic studies are in progress to confirm the pk-trisaccharide occupancy of binding site 1 in a complex of $\mathbf{1}$ with SLT-1 and to reveal structural differences between SLT-1 and SLT-2 that account for the indiscriminate response of SLT-2 to multivalent inhibitors 1 and 2

Figure 2. ELISA and Cytotoxicity Inhibition Assay

Conclusions

- A modification of STARFISH has been synthesized, which shows SLT-1 in vivo inhibition at

The activity of this 20 -meric ligand with regard to Shiga-like toxin Type 2 is virtually den Pk-trisaccharide with SLT

References

1. Ling, H.; Boodhoo, A.; Hazes, B.; Cummings, M. D.; Armstrong, G. D.; Brunton, J. L.; Read, R. J., Kitov, P. I.; Sadowska, J. M.; Mulvey, G.; Armstrong, G. D.; Ling, H.; Pannu, N. S.; Read, R. J.; and Bundle, D. R., Nature, 2000, 403, 669-672.
