Supplementary Material

Protein variant	Substitutions and modifications relative to parent
mTFP1ª	= cFP484 ^b + delete all residues before 6a and add MVSKGEE, H42N, L44I,
	S62T, N63T, Q66A, L72F, A80P, D81N, R123H, F124L, D125K, M127E,
	L141T, K142G, E144D, P145A, I149R, V158K, I161V, S162K, S164K,
	Y173H, C175V, S179T, K182R, V186A, L213V, N216S, Y221N, L223T,
	L224D, delete all residues after 224 and add GMDELYK.
mClavGR1°	= mTFP1 + G6dS, K17R, E34S, Y38F, D39E, N42Q, N45D, S57A, A66H,
	A71V, N81D, T96S, K102G, V105C, K106I, V107A, K108T, S109N, S112T,
	E115K, Y120N, E121K, L124F, D144E, R149K, H163M, E168K, H173Y,
	V175C, K178R, I180T, R182K, Q184a insertion, N203S, T212K, V213L,
	S216H, R220H, N221S, S222G, T223L, D224P
mClavGR1.1	= mClavGR1 + T6bI, S34R, K36R, K74R, M113I, L166Q, Y173H
dClavGR1.6	= mClavGR1 + T6bI, T41I, D77E, F99Y, K115E, E127V, K139R, A183V
mClavGR1.8	= mClavGR1 + T6bI, T41I, D77E, F99Y, K115E, K139R, A183V
mClavGR2	= mClavGR1 + T6bI, T41I, D77E, F99Y, K115E, E127T, K139R, A183V
^a Previously descri	bed. ^{1 b} cFP484 is the wild-type protein from <i>Clavularia</i> (Genbank accession
AAF03374). ² ° The ke	ey monomerizing mutations R123H, D125K, and M127E (of the A-B interface)
and S162K and S164F	K (of the AC interface) of mTFP1 have been retained in mClavGR1.

Supplementary Table 1. Definitions of variants described in this work.

Supplementary Table 2. Positions targeted for partial or complete randomization by mutagenesis. Figures were generated from PDB ID 2HQK¹ using MacPyMol (DeLano Scientific). Residues being substituted are indicated in red.

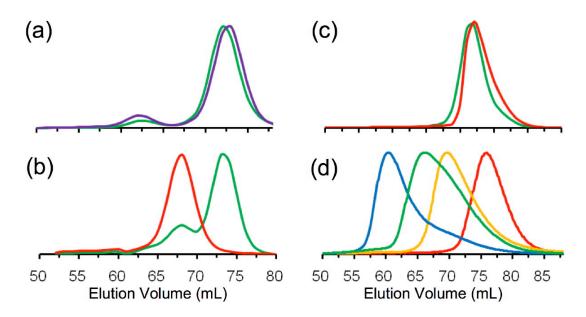
Template	Residue(s)	Substitution(s)	Codon(s)	Result	Notes		
	I44	All 20 amino acids	NNK	no improved	Close proximity to chromophore. Substitutions at residues 44 and 199 previously shown to benefit KikGR. ³		
mClavGR1	I199	Leu, Ile, Met, Val, His, Gln, Asn, Lys Asp, Glu	VWK	variants			
mClavGR1	Т73	All 20 amino acids	NNK	no improved variants	Previously reported to influence pK_a of related FPs. ⁴		
	F38	All 20 amino acids	NNK	n a immersed			
dClavGR1.6	E39	Asp, Glu, Gly, His, Lys, Asn, Gln, Arg, Ser	VRN	variants	A cluster of residues located near the 'top' of the central helix. Substitution of residue 74 previous		
	K74	Asp, Glu, Gly, His, Lys, Asn, Gln, Arg, Ser	VRN		shown to benefit KikGR. ³		
	E127V	Glu. Thr	GAA (Glu)	identified	Disrupted residual dimerization tendency		
mClavGR1.6			ACB (Thr)	E127T			
dClavGR1.6	K162	All 20 amino acids	NNK	no improved variants	Adjacent to M163, which is in close proximity to the chromophore. K162A similar with K162K.		
dClavGR1.6	M163	His or all 20 amino acids	CAY or NNK	no improved variants	Interacts with phenolate of chromophore. M163K brighter in green state but did not photoconvert to the red state.		
	F124	Phe, Ile, Leu, Val	NTT				
	K125	His, Lys, Gln, Asn	AAM, MAG	no improved	K125N similar to K125K		
mClavGR2	N128	Pro, Arg, Ser, Thr	MSC	variants	K125N SIMILAR TO K125K		
	F129	Phe, Ile, Leu, Val	NTT				

	mTFP1	mClavGR1	mClavGR1.1	mClavGR2	mEos2	Dendra2	Kaede	mKikGR
mTFP1		81.9	80.2	79.3	62.4	66.9	59.1	59.3
mClavGR1	90.7		97	96.6	77.6	70.2	75.1	71.5
mClavGR1.1	89.9	98.7		94.5	75.5	68.5	73.8	70.2
mClavGR2	89	98.3	97.9		76.4	69.3	73.8	71.1
mEos2	76.3	84.4	83.5	84.4		70.9	83.2	71.7
Dendra2	78	81	81	80.6	84.1		67.7	64.4
Kaede	76.3	84	84	83.5	91.6	82.7		66.1
mKikGR	77.5	84.8	83.5	84.4	83.6	80.2	80.6	

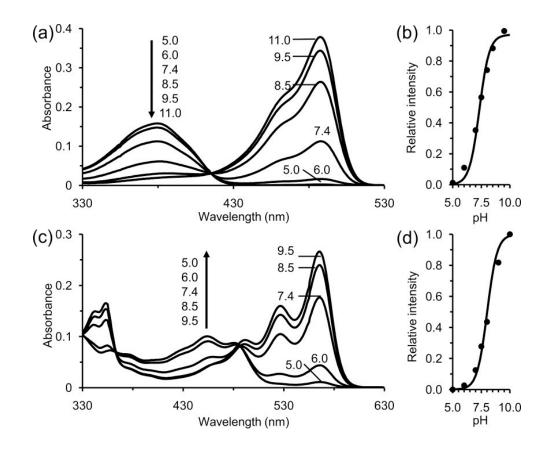
Supplementary Table 3. Amino acid similarities (lower triangle) and identities (upper triangle) as calculated using MatGat⁵ using the complete protein sequences provided in **Fig. 2**.

	mTFP1	mClavGR1	mClavGR1.1	mClavGR2	mEos2	Dendra2	Kaede	mKikGR
mTFP1		80.5	79.2	78.3	66.5	71.8	62.4	63.2
mClavGR1	90		97.3	96.8	82.8	74.2	79.6	76.3
mClavGR1.1	89.6	99.1		94.1	80.5	72.4	78.3	75
mClavGR2	88.7	98.6	97.7		81.4	73.3	78.3	75.9
mEos2	80.5	89.6	88.7	89.6		71	84.2	74.1
Dendra2	83.2	85.1	85.1	84.6	83.7		67.9	65.9
Kaede	79.6	88.7	88.7	88.2	92.3	82.4		68.3
mKikGR	80.7	88.8	87.4	88.3	86.1	82.1	83.4	

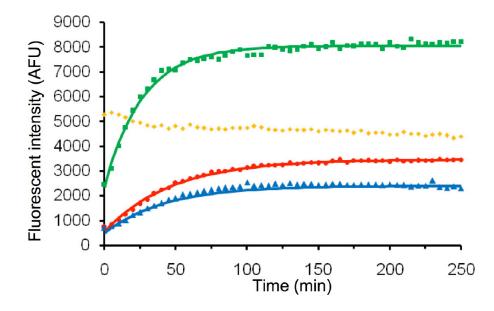
Supplementary Table 4. Amino acid similarities (lower triangle) and identities (upper triangle) as calculated using MatGat⁵ using only the sequence from position 6c to 224 in **Fig. 2**.

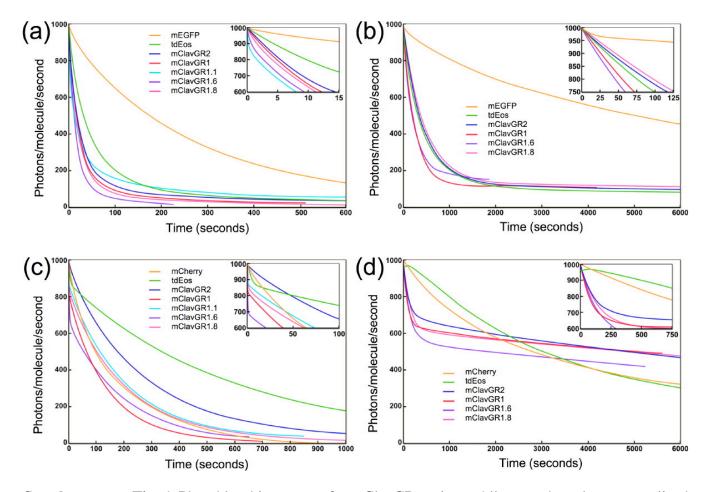

Supplementary Table 5. Amino acid differences between green-to-red proteins, considering only those residues with side chains directed towards the interior of the β -barrel. Amino acids that differ from mClavGR2 are shaded gray.

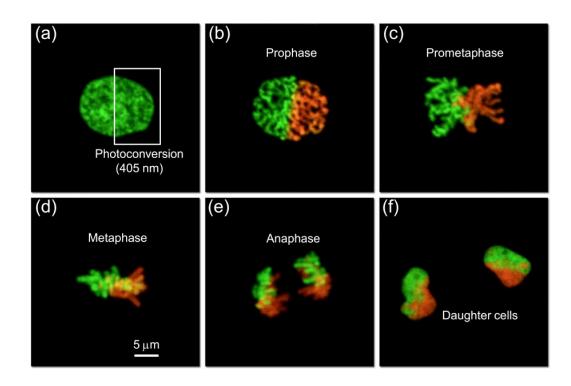
Position	mClavGR2	mEos2	Dendra2	Kaede	mKikGR
14	I	I	V	I	I
16	L	L	V	L	L
44	I	М	А	М	V
52	А	G	А	А	G
57	А	А	S	А	А
58	Y	F	Y	Y	F
65	F	F	V	F	F
73	Т	А	Т	А	V
91	Y	Y	Y	F	Y
97	М	L	М	L	М
99	Y	F	F	F	Y
107	А	А	Ι	А	А
109	Ν	Ν	S	Ν	Ν
120	Ν	Ν	Q	Ν	Ν
122	Ι	V	V	V	Ι
150	М	М	L	М	М
161	V	Ι	Ι	I	V
183	V	А	А	S	А
199	I	Ι	Ι	Ι	М
213	L	L	L	L	А
# difference	es from mClavGR2	9	13	8	7

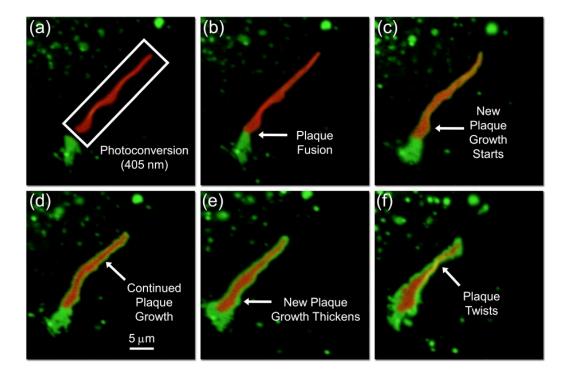

Supplementary Table 6. Sum of the number of differences between green-to-red proteins, considering

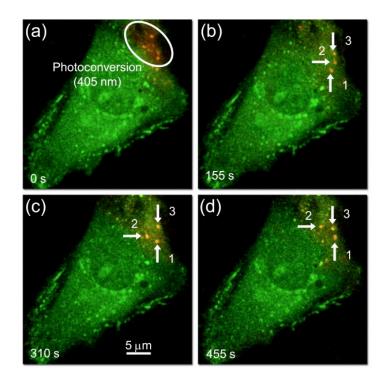
only those residues with side chains directed towards the interior of the β -barrel.


	mEos2	Dendra2	Kaede	mKikGR
mClavGR2	9	13	8	7
mEos2		13	4	8
Dendra2			13	17
Kaede				12


Supplementary Fig. 1. Characterization of the oligomeric structure of mClavGR2, mEos2, and Dendra2 by gel filtration chromatography. (a) Coinjection of mCherry and mClavGR2 with detection at both 488 nm (green) and 585 nm (violet). The identity of the species eluting at approximately 63 min is currently unknown, but it was not observed when the sample was first purified with gel filtration as in panel (c). (b) Coinjection of mClavGR2 and dTomato with detection at both 488 nm (green) and 555 nm (red). (c) Overlaid elution profiles from separate injections of 1 mM mClavGR2 (green) and 1 mM Dendra2 (red) with detection at 488 nm. (d) Overlaid elution profiles from separate injections of the samples are 1 mM (blue), 0.5 mM (green), 0.1 mM (yellow) and 0.01 mM (red).


Supplementary Fig. 2. Characterization of the pH dependence of the green and red states of mClavGR2. (a) Absorbance spectra of the pre-photoconversion green state of mClavGR2 at pH values ranging from 5 to 11. (b) Plot of relative intensity at 490 nm as a function of pH. The line represents the best fit of the data using the Henderson-Hasselbalch equation and is consistent with a pK_a of 8.0. (c) Absorbance spectra of the post-photoconversion red state of mClavGR2 at pH values ranging from 5 to 11. (d) Plot of relative intensity at 570 nm as a function of pH and it as in panel (b). The fit is consistent with a pK_a of 7.3.


Supplementary Fig. 3. Maturation of monomeric photoconvertible FPs at 37°C. The maturation profiles of mClavGR2 (green), mClavGR1 (red), and Dendra2 (blue) can be fit as monoexponential curves with time constants of 27 min, 47 min and 42 min, respectively. Under the conditions of this experiment, mEos2 (yellow) appears to have fully matured prior to the initial measurement. Each curve represents the average of two independent experiments.


Supplementary Fig. 4. Photobleaching curves for mClavGR variants. All curves have been normalized to an initial fluorescence emission rate of 1,000 photons/molecule/second. (a) Widefield photobleaching of the green state. (b) Confocal photobleaching of the green state. (c) Widefield photobleaching of the red state. (d) Confocal photobleaching of the red state.

Supplementary Fig. 5. Photoconversion and imaging of H2B-mClavGR2. These frames are taken from **Supplementary Movie 1**. (a) The photoconverted region is indicated with a white rectangle. (b-e) Progression through mitosis. (f) Daughter cells.

Supplementary Fig. 6. Photoconversion and imaging of Cx43-mClavGR2. These frames are taken from **Supplementary Movie 2**. (a) The photoconverted region is indicated with a white rectangle. (b-f) Time lapse images of a plaque fusion event and new plaque growth from the edges of the gap junction.

Supplementary Fig. 7. Photoconversion and imaging of endosomes with Rab5a-mClavGR2. These frames are taken from **Supplementary Movie 3**. (a) The photoconverted region is indicated with a white oval. (b-d) Time lapse tracking of the dynamic localization of 3 individual endosomes.

Supplementary References

1. Ai H., Henderson J. N., Remington S. J. & Campbell R. E. (2006). Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging. *Biochem. J.* **400**, 531-540.

Matz M. V., Fradkov A. F., Labas Y. A., Savitsky A. P., Zaraisky A. G., Markelov M. L. & Lukyanov
S. A. (1999). Fluorescent proteins from nonbioluminescent Anthozoa species. *Nat. Biotechnol.* 17, 969-973.

3. Tsutsui H., Karasawa S., Shimizu H., Nukina N. & Miyawaki A. (2005). Semi-rational engineering of a coral fluorescent protein into an efficient highlighter. *EMBO Rep.* **6**, 233-238.

4. Adam V., Nienhaus K., Bourgeois D. & Nienhaus G. U. (2009). Structural basis of enhanced photoconversion yield in green fluorescent protein-like protein Dendra2. *Biochemistry* **48**, 4905-4915.

5. Campanella J. J., Bitincka L. & Smalley J. (2003). MatGAT: an application that generates similarity/ identity matrices using protein or DNA sequences. *BMC Bioinformatics* **4**, 29.